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Approved for public release. Distribution is unlimited.



THIS PAGE INTENTIONALLY LEFT BLANK



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704�0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson Davis Highway, Suite 1204, Arlington, VA 22202�4302, and
to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

September 2017
3. REPORT TYPE AND DATES COVERED

Dissertation
4. TITLE AND SUBTITLE

CORRELATION IMMUNITY, AVALANCHE FEATURES, AND OTHER
CRYPTOGRAPHIC PROPERTIES OF GENERALIZED BOOLEAN FUNC-
TIONS

5. FUNDING NUMBERS

6. AUTHOR(S)

Thor Martinsen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This dissertation investigates correlation immunity, avalanche features, and the bent cryptographic properties for generalized Boolean
functions defined on Vn with values in Zq. We extend the concept of correlation immunity from the Boolean case to the generalized
setting, and provide multiple construction methods for order 1 and higher correlation immune generalized Boolean functions. We
establish necessary and sufficient conditions for generalized Boolean functions. Additionally, we discuss correlation immune and
rotation symmetric generalized Boolean functions, introducing a construction method along the way. Using a graph-theoretic and
probabilistic frame of reference, we subsequently establish several, increasingly stringent, strict avalanche criteria along with a con-
struction method for generalized Boolean functions. We introduce the notion of a uniform avalanche criterion and demonstrate that
generalized Boolean functions that satisfy this criterion are also order 1 correlation immune and always have Boolean function compo-
nents that are both order 1 correlation immune and satisfy the strict avalanche criterion. We subsequently investigate linear structures,
directional derivatives and define a unit vector gradient for generalized Boolean function. We introduce the Walsh-Hadamard trans-
form of a generalized Boolean function along with the notion of generalized bent Boolean functions. We provide a construction of
generalized bent Boolean functions with outputs in Z8 and establish necessary conditions for generalized bent Boolean functions.

14. SUBJECT TERMS

Cryptography, coding theory, Boolean functions, generalized Boolean functions, correlation immunity, strict
avalanche criterion, bent functions, cyber, information warfare, information security, communications security.

15. NUMBER OF
PAGES 161

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2�89)

Prescribed by ANSI Std. 239�18

i



THIS PAGE INTENTIONALLY LEFT BLANK

ii



Approved for public release. Distribution is unlimited.

CORRELATION IMMUNITY, AVALANCHE FEATURES, AND OTHER
CRYPTOGRAPHIC PROPERTIES OF GENERALIZED BOOLEAN FUNCTIONS

Thor Martinsen
Commander, United States Navy

B.S., Thomas Edison State College, 1996
B.A., Skidmore College, 2007

M.S., Naval Postgraduate School, 2007

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
September 2017

Author: Thor Martinsen

Approved by: Pantelimon Stănică
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ABSTRACT

This dissertation investigates correlation immunity, avalanche features, and the bent cryp-
tographic properties for generalized Boolean functions defined on Vn with values in Zq.
We extend the concept of correlation immunity from the Boolean case to the generalized
setting, and provide multiple construction methods for order 1 and higher correlation im-
mune generalized Boolean functions. We establish necessary and sufficient conditions for
generalized Boolean functions. Additionally, we discuss correlation immune and rotation
symmetric generalized Boolean functions, introducing a construction method along the
way. Using a graph-theoretic and probabilistic frame of reference, we subsequently es-
tablish several, increasingly stringent, strict avalanche criteria along with a construction
method for generalized Boolean functions. We introduce the notion of a uniform avalanche
criterion and demonstrate that generalized Boolean functions that satisfy this criterion are
also order 1 correlation immune and always have Boolean function components that are
both order 1 correlation immune and satisfy the strict avalanche criterion. We subsequently
investigate linear structures, directional derivatives and define a unit vector gradient for
generalized Boolean function. We introduce the Walsh-Hadamard transform of a general-
ized Boolean function along with the notion of generalized bent Boolean functions. We
provide a construction of generalized bent Boolean functions with outputs in Z8 and estab-
lish necessary conditions for generalized bent Boolean functions.
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Executive Summary

The Nation that makes a great

distinction between its scholars and its

warriors will have its thinking done by

cowards and its fighting done by fools.

ThucydidesQ

This dissertation investigates cryptographic properties of generalized Boolean functions.
Generalized Boolean functions, f : Vn→ Zq, are functions from the vector space of binary
vectors of length n to a ring of integers modulo q. The classical Boolean case, where q = 2,
has been studied extensively. Such Boolean functions are frequently used as components in
cryptographic algorithms. Much less is currently known about the generalized case, where
q > 2. From a cryptologist’s point of view, generalized Boolean functions show promise in
a number of cryptographic applications, including those in the quantum environment.

In this dissertation we investigate correlation immunity, avalanche features, and the bent
property of generalized Boolean functions. We extend the concept of correlation immu-
nity to the generalized setting and establish several new results for correlation immune
generalized Boolean functions. We present several algorithms for the construction of or-
der 1, higher order, concatenated, and rotation symmetric correlation immune generalized
Boolean functions. We also establish necessary and sufficient conditions for correlation im-
mune generalized Boolean functions. Doing so is important because generalized Boolean
functions suitable for cryptographic applications must not only be correlation immune, but
all of their constituent Boolean function components must also be correlation immune. Us-
ing a graph-theoretic and probabilistic frame of reference, we then investigate avalanche
features of generalized Boolean functions. We establish several, increasingly stringent,
avalanche criteria for generalized Boolean functions. This line of investigation culminates
in the development of the uniform avalanche criterion (UAC). We demonstrate that gener-
alized Boolean functions that satisfy the UAC are also order 1 correlation immune and con-
tain Boolean function components all of which are order 1 correlation immune and satisfy
the strict avalanche criterion (SAC). We investigate linear structures and directional deriva-

xv



tives of UAC compliant generalized Boolean functions. We also introduce and demonstrate
the utility of the concept of a uniform generalized Boolean function unit vector gradient.
Finally, we present a selection of results on generalized bent Boolean functions taken from
the dissertation author’s previously published papers on the topic. In particular, we in-
troduce the Walsh-Hadamard transform of generalized Boolean functions, and define the
concept of a generalized bent Boolean function. We subsequently provide a construction of
generalized bent Boolean functions with outputs in Z8, and establish necessary conditions
for generalized bent Boolean functions.
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CHAPTER 1:

Introduction

He who loves practice without theory

is like the sailor who boards ship

without a rudder and compass and

never knows where he may cast.

Leonardo da VinciQ

1.1 Background
Functions f : Vn → F2 from the vector space Vn of all binary vectors of length n, to the
finite field of two elements are known as Boolean functions. These functions are essential
components in modern cryptography and error correction codes. As such, they have been
the subject of intense study for the past 50 years, and much is therefore known about them.
In contrast, much less is understood about generalized Boolean functions from the vector
space Vn of all binary vectors of length n, to Zq, where q≥ 2. Yet, these functions also show
great promise of utility in future information, communications, and defense technologies.

The goal of this research has been to increase our understanding of generalized Boolean
functions which satisfy certain cryptographic properties. Specifically, generalized Boolean
functions which are correlation immune or satisfy strict avalanche criteria. As our starting
point, we use existing Boolean functions research and then attempt, where possible, to
extend these results into the more general setting. Much of Boolean function research has a
tendency to be highly theoretical; while some of this research inevitably will follow suit, we
have, whenever possible, tried to supply the reader with a generous number of examples as
well as a fair number of algorithms with which they can go about constructing the functions
under consideration.
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1.2 Contributions
This dissertation makes the following contributions to the study of generalized Boolean
functions:

• We define the algebraic normal form (ANF) of a generalized Boolean function and
demonstrate a method of deriving the ANF using the function’s truth table.
• Given function parameters n and q, we provide respective counts for the number of

balanced and symmetric generalized Boolean functions in n variables with output
values in Zq.
• We present several theorems regarding nontrivial binomial bisections, and provide a

complete list of all binomial bisection solutions for n≤ 51.
• We extend the concept of correlation immunity from the Boolean case to the gener-

alized setting.
• We provide an algorithm with which to construct a large class of correlation immune

(order 1) generalized Boolean functions.
• Using linear orthogonal arrays we demonstrate a method of creating higher order

correlation immune generalized Boolean functions.
• We extend and prove a generalized version of the Siegenthaler correlation immune

Boolean function construction method, whereby two correlation immune (order t)
generalized Boolean functions in n variables are combined to create a correlation
immune (order t) generalized Boolean function in n+1 variables.
• We establish necessary and sufficient conditions which ensure that both a general-

ized Boolean function as well as its Boolean function components are all correlation
immune.
• We investigate correlation immune and rotation symmetric generalized Boolean

functions and introduce a construction method for such functions.
• We establish an upper bound for the number of rotation symmetric (RotS) general-

ized Boolean functions, and prove that there are no balanced and RotS generalized
Boolean functions in p variables with output values in Zq, for odd prime p and q > 2.
• Using a graph-theoretic and probabilistic frame of reference, we establish several,

strict avalanche criteria including the notion of a uniform avalanche criterion (UAC).
• We prove that generalized Boolean functions which satisfy the uniform avalanche

criterion are also order 1 correlation immune.

2



• We prove that generalized Boolean functions which satisfy the uniform avalanche
criterion have Boolean function components which are all both SAC and order 1
correlation immune.
• We investigate linear structures and directional derivatives of UAC-compliant gener-

alized Boolean function and introduce the concept of a generalized Boolean function
unit-vector gradient.
• We introduce the Walsh-Hadamard transform of generalized Boolean functions, and

define perfect nonlinear generalized Boolean functions and generalized bent Boolean
functions.
• We provide a construction of generalized bent Boolean functions in n variables with

output values in Z8.
• We further establish necessary conditions for generalized bent Boolean functions.

1.3 Dissertation Organization
This dissertation is divided into six chapters and three appendices. In addition to the in-
troductory chapter in which you now find yourself, the remaining chapters are laid out
as follows. Chapter 2 contains definitions and preliminary generalized Boolean function
material. This is followed by Chapters 3–5, which contain the bulk of the dissertation re-
search, including all major results. Chapter 3 deals with correlation immune generalized
Boolean functions, whereas Chapter 4 tackles strict avalanche criteria. Chapter 5 contains
a brief overview of the generalized bent property along with a selection of results taken
from the this author’s previously published papers on this topic. Chapter 6 includes the
dissertation conclusion along with a short discussion of follow-on research possibilities.
This is followed by three appendices, the two first of which include a list of nontrivial bi-
nomial bisections along with the Julia parallel computer search program which generated
the results. The final appendix includes a list of a few linear orthogonal arrays suitable for
construction of higher order correlation immune generalized Boolean functions.

3
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CHAPTER 2:

Basic Properties of Generalized Boolean Functions

Sic Parvis Magna

Sir Francis DrakeA

In this chapter we begin by covering some basic definitions and properties which we will
make use of throughout this dissertation.

2.1 Preliminaries
In a similar manner to what was done in [44], we will throughout this dissertation use the
following definitions: We denote the set of integers, real numbers and complex numbers
by Z, R and C, respectively. We further denote the ring of integers modulo q by Zq. The
vector space Vn, sometimes alternatively referred to as Fn

2, is the space of all n-tuples x =

(xn, . . . ,x1) of elements from F2 with the standard operations. By “+” we denote addition
over Z, R and C, whereas “⊕” denotes addition over Vn for all n≥ 1. Addition modulo q is
denoted by “+” and it is understood from the context. If x=(xn, . . . ,x1) and y=(yn, . . . ,y1)

are in Vn, we define the scalar (or inner) product by x · y = xnyn⊕ ·· ·⊕ x2y2⊕ x1y1. The
cardinality of the set S is denoted by |S|, and the conjugate of a bit b will be denoted by
b̄. If z = a+ bı ∈ C, then |z| =

√
a2 +b2 denotes the absolute value of z, and z = a− bı

denotes the complex conjugate of z, where ı2 = −1, and a,b ∈ R. The concatenation of
two vectors x and y is denoted x‖y. Additionally, as in [11], we use the Landau symbol O

with its usual meaning, that is, F = O(G) means |F(x)| ≤ c|G(x)| holds for some positive
constant c, and x sufficiently large.

Definition 2.1. A function from Vn to F2 is called a Boolean function. The algebra of all
Boolean functions on Vn is denoted by Bn [11].

Definition 2.2. We call a function from Vn to Zq, where q is a positive integer such that q≥
2, a generalized Boolean function on n variables [42]. We denote the set of such functions
by G Bq

n. If q = 2, we obtain the previously defined classical Boolean functions [44].

5



For a given n, there are a total of 2n possible Boolean input vectors, each of which can
in turn be mapped to q possible outputs. Therefore the total number of Boolean functions
is |Bn|= 22n

, whereas the total number of generalized Boolean functions is |G Bq
n|= q2n

.
Given the fact that these formulae are double-exponential, the number of possible functions
quickly becomes astronomical even for input vectors of relatively modest dimensions. For
example, given input vectors of size n = 7 and output values in Z5, the number of gener-
alized Boolean functions is |G B5

7| ≈ 2.94×1089. By comparison, the number of atoms in
the observable universe is estimated to be between 1078 and 1082.

As was done in [44], for any function f ∈ G Bq
n and 2k−1 < q≤ 2k, we associate a unique

sequence of Boolean functions ai ∈Bn (i = 0,1, . . . ,k−1) such that

f (x) = a0(x)+2a1(x)+ · · ·+2k−1ak−1(x), for all x ∈ Vn. (2.1)

Definition 2.3. A generalized Boolean function f (x) in n variables is a map from Vn to Zq.
In a manner similar to that in [11], the q-ary sequence defined by ( f (v0), f (v1), . . . , f (v2n−1)),
where v0 = (0, . . . ,0,0),v1 = (0, . . . ,0,1), . . . ,v2n−1 = (1, . . . ,1,1) is denoted by f and is
called the truth table of f (x).

Definition 2.4. The Hamming weight of a vector x = x1 · · ·xn (often written as x =

(x1, . . . ,xn)), denoted by wt(x), is the number of nonzero xi, where xi ∈ Zq [26]. The
Hamming weight of a function f (x) is the Hamming weight of its truth table [11].

Definition 2.5. Given two q-ary vectors, x and y of length n, the Hamming distance be-
tween the two vectors, denoted d(x,y), is the number of indices where their values differ.
Similarly, the Hamming distance between two n-variable functions f (x) and g(x), denoted
d( f ,g) is defined as the number of indices for which their truth tables differ.

6



2.2 The Algebraic Normal Form for Generalized Boolean
Functions

Definition 2.6. [11] Let f ∈ Bn be a Boolean function and let i = (i1, . . . , in) and
xi := xi1

1 xi2
2 · · ·xin

n . The Boolean function f is expressed in Algebraic Normal Form in the
following manner:

f (x) =
2n−1⊕
i=0

ci ·xi,

where ci ∈ F2 and i ∈ Vn, is the lexicographically ordered binary expansion of index i.

Example 2.7. Consider the Boolean function f (x) = x1⊕ x2x3⊕ x4. Using the above defi-
nition it can be represented in ANF as:

f (x) = 0 ·x0
1x0

2x0
3x0

4⊕1 · x1
1x0

2x0
3x0

4⊕·· ·⊕1 · x0
1x1

2x1
3x0

4⊕·· ·⊕1 · x0
1x0

2x0
3x1

4⊕·· ·⊕0 · x1
1x1

2x1
3x1

4.

Building upon this, we now define the Algebraic Normal Form for generalized Boolean
functions as follows:

Definition 2.8. Let f ∈ G Bq
n be a generalized Boolean function such that f (x) = a0(x)+

2a1(x)+ · · ·+2k−1ak−1(x), where 2k−1 < q≤ 2k. Let j=( j1, . . . , jn) and xj := x j1
1 x j2

2 · · ·x
jn
n .

We then define the Algebraic Normal Form of f in the following manner:

f (x) =
k−1

∑
i=0

2i

(
2n−1⊕
j=0

ci jxj

)
,

where c j ∈ F2, j ∈Vn is the lexicographically ordered binary expansion of index j, and the
summation is carried out modulo 2k.

It is relatively straightforward to recognize the existence and uniqueness of the ANF repre-
sentation of generalized Boolean functions by considering the following: First, each vector,
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v ∈Vn, utilized in the ANF is unique and establishes a surjective map between Vn and Bn.
Secondly, since |Vn|= 2n, the power set of Vn has cardinality |P(Vn)|= 22n

= |Bn|. Fi-
nally, the binary expansion of any integer q is unique. Given the ANF of a generalized
Boolean function f , we can create the truth table of the function by simply using the ANF
and evaluating, in turn, each of the 2n lexicographically ordered input vectors. In order to
proceed in the opposite direction and transform a truth table into an ANF expression, we
first perform a binary expansion of each q-ary entry in the truth table, thereby creating mul-
tiple binary truth tables, one for each respective 2k component of f , where 0≤ k ≤ log2 q .
Subsequently we perform the divide-and-conquer butterfly algorithm (see the description of
Carlet in [7]) on each of the constituent binary truth tables and produce the corresponding
2k-associated ANF components of the generalized Boolean function.

Example 2.9. Suppose we want to find the ANF for a function, f ∈ G B4
3, with the truth

table f = 02032012. We begin by finding the binary truth tables a0 and a1 associated with
20 and 21 respectively by performing a binary expansion of f :

f a0 a1

0 0 0

2 0 1

0 0 0

3 1 1

2 0 1

0 0 0

1 1 0

2 0 1

Having done so, we then apply the following algorithm to each of the binary truth tables.

8



Algorithm 1 TT to ANF (Butterfly algorithm) – see [7]
1: Write the truth-table of f , in which the binary vectors of length n are in lexicographic

order.
2: Let f0 be the restriction of f to Fn−1

2 ×{0} and f1 the restriction of f to Fn−1
2 ×{1}.

The truth-table of f0 (resp. f1) corresponds to the upper (resp. lower) half of the table
of f ; replace the values of f1 by those of f0⊕ f1

3: Apply recursively step 2, separately to the functions now obtained in the places of f0

and f1.
4: The algorithm terminates when it arrives at functions on one variable each. At this

point the global table gives the values of the ANF of f .

For a0 this yields the following.

a0 ANF

0 0 0 f0 0
0 f0 0 f0 0 f1 0
0 0 f1 0 f0 0
1 1 1 f1 1
0 0 0 f0 0
0 f1 0 f0 0 f1 0
1 1 f1 1 f0 1
0 1 1 f1 0

Reading off the ANF column we recover the 20-associated ANF-component of f :

a0(x) = 0 · x0
1x0

2x0
3⊕0 · x1

1x0
2x0

3⊕0 · x0
1x1

2x0
3⊕1 · x1

1x1
2x0

3

⊕0 · x0
1x0

2x1
3⊕0 · x1

1x0
2x1

3⊕1 · x0
1x1

2x1
3⊕0 · x1

1x1
2x1

3.

Proceeding in a similar manner for a1 yields:
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a1 ANF

0 0 0 f0 0
1 f0 1 f0 1 f1 1
0 0 f1 0 f0 0
1 1 0 f1 0
1 1 1 f0 1
0 f1 1 f0 1 f1 0
0 0 f1 1 f0 1
1 0 1 f1 0

a1(x) = 0 · x0
1x0

2x0
3⊕1 · x1

1x0
2x0

3⊕0 · x0
1x1

2x0
3⊕0 · x1

1x1
2x0

3

⊕1 · x0
1x0

2x1
3⊕0 · x1

1x0
2x1

3⊕1 · x0
1x1

2x1
3⊕0 · x1

1x1
2x1

3.

Finally, assembling both ANF components we recover the ANF for our generalized
Boolean function,

f (x) = 0 · x0
1x0

2x0
3⊕0 · x1

1x0
2x0

3⊕0 · x0
1x1

2x0
3⊕1 · x1

1x1
2x0

3⊕0 · x0
1x0

2x1
3

⊕0 · x1
1x0

2x1
3⊕1 · x0

1x1
2x1

3⊕0 · x1
1x1

2x1
3 +2(0 · x0

1x0
2x0

3⊕1 · x1
1x0

2x0
3⊕0 · x0

1x1
2x0

3

⊕0 · x1
1x1

2x0
3⊕1 · x0

1x0
2x1

3⊕0 · x1
1x0

2x1
3⊕1 · x0

1x1
2x1

3⊕0 · x1
1x1

2x1
3).

The complexity of computing the truth table from the ANF of a Boolean function f ∈Bn,
is O(n2n). The complexity of the butterfly algorithm is also O(n2n) [7]. Therefore, the
complexity of computing the ANF from the truth table of a generalized Boolean function
f ∈ G Bq

n (or vice versa), as described above, is O(dlog2 qen2n).

In a similar manner as was done for Boolean functions in [11], we define the algebraic
degree and homogeneity of generalized Boolean function as follows:

Definition 2.10. Given a generalized Boolean function f ∈ G Bq
n, we define the algebraic

degree d◦ f to be the number of variables in the highest order monomial with nonzero
coefficients in the ANF of f .

Note that defining the degree of general Boolean functions in this manner is possible due
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to the existence and uniqueness of the ANF, which we previously demonstrated.

Definition 2.11. A generalized Boolean function f ∈ G Bq
n is said to be homogeneous if

all of the terms in its ANF are of the same degree.

Seen from the ANF perspective, the simplest Boolean functions are those that are linear or
affine (linear function plus a constant). These functions have d◦ f = 1 and are of the form:

f (x) = w1x1⊕w2x2⊕·· ·⊕wnxn⊕w0.

Letting w = (w1, . . . ,wn),x = (x1, . . . ,xn) ∈Vn, w0 ∈ F2 and denoting w ·x, the usual inner
product, we can write: w · x = w1x1⊕w2x2⊕·· ·⊕wnxn and f (x) = w · x⊕w0. If w0 = 0
then f is linear, otherwise f is affine.

Definition 2.12. We denote the sets of all n-variable linear and affine functions as Ln and
An, respectively.

Affine functions are important both in coding theory and cryptography. In coding theory
affine functions play a key role in Reed-Muller codes of order 1, whereas in cryptogra-
phy we strive to avoid using affine functions and select instead nonlinear functions whose
(cryptographic) behavior is as far as possible from those contained in An [7].

2.3 Fourier Transforms and Generalized Boolean Func-
tions

Definition 2.13. [44] We let ζ = e2πı/q be the complex q-primitive root of unity. To each
generalized Boolean function f (x) we associate its character form, sometimes also referred
to as the sign function in characteristic 2, which is defined as:

f̂ (x) = ζ f (x).

Notice that for q = 2, this reduces to the familiar Boolean function character form:

f̂ (x) = (−1) f (x).

11



Definition 2.14. As is customary, given a Boolean function f (x), the derivative of f (x)
with respect to a vector a, denoted by Da f (x), is the Boolean function defined by:

Da f (x) = f (x⊕a)⊕ f (x), for all x ∈ Vn.

Observe that if f (x) = f (x⊕ a), then Da f (x) = 0 whereas if f (x) 6= f (x⊕ a), then
Da f (x) = 1. Inasmuch, ∑

x∈Vn

Da f (x) counts the number of input vectors which result in

changes to the output values when a change of direction of a is applied, and can therefore
be viewed as a directional derivative.

Definition 2.15. Given a generalized Boolean function f (x), we define the derivative Da f

of f with respect to a vector a to be the generalized Boolean function Da f (x) by:

Da f (x) = f (x⊕a)− f (x) for all x ∈ Vn.

Definition 2.16. Given a vector a ∈ Vn, we say a is a linear structure of a generalized
Boolean function f (x) ∈ G Bq

n, if the derivative of f (x) with respect to a remains constant,
that is, if Da f (x) = c ∈ Zq, for all x ∈ Vn.

Definition 2.17. [44] The (normalized) generalized Walsh–Hadamard transform of f ∈
G Bq

n at any point u ∈ Vn is the complex valued function

H f (u) = 2−
n
2 ∑

x∈Vn

ζ
f (x)(−1)u·x.

If q = 2, we obtain the (normalized) Walsh–Hadamard transform of f ∈Bn, which will be
denoted by Wf [44].

Definition 2.18. [44] The sum

C f ,g(z) = ∑
x∈Vn

ζ
f (x)−g(x⊕z)

is the crosscorrelation of f and g at z. The autocorrelation of f ∈G Bq
n at u∈Vn is C f , f (u)

above, which we denote by C f (u).
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2.4 Balance and Symmetry
A Boolean function f ∈ G Bq

n is balanced if its output values are uniformly distributed.
In order for a generalized Boolean function to be balanced, we must have q = 2` for ` ≤
n, since the function’s q possible output values must be evenly distributed among its 2n

outputs.

Recall that a Boolean function f ∈Bn is balanced if and only if the Hamming weight of
its truth table is exactly 2n−1 [11].

Lemma 2.19. If a generalized Boolean function f (x) ∈ G B2`
n is balanced, then its Ham-

ming weight equals ∑
2`−1
i=1 2n−` = 2n−2n−`. Notice that if `= 1, this reduces to the Boolean

function case where the weight of f equals 2n−1.

Considering Walsh-Hadamard transforms for a moment, we recall from [11] that a Boolean
function f is balanced if and only if the Walsh-Hadamard transform,

Wf (0) = 0.

In the generalized Boolean function case, we can say the following:

Lemma 2.20. If a generalized Boolean function f is balanced, then the generalized Walsh-

Hadamard transform of f is,

H f (0) =
2`−1

∑
j=0

2n−`
ζ

j = 2n−`ζ 2`−1
ζ −1

= 0.

The reader will notice that unlike in the classical Boolean functions case, the preceding
criteria for generalized Boolean functions are not biconditional. That is, if a generalized
Boolean function is balanced, then the criteria hold. However, for ` > 1, the fact that a gen-
eralized function satisfies the Hamming weight or Walsh-Hadamard transform conditions
outlined above are necessary, but not sufficient conditions for the function to be balanced.
In fact, there are many generalized Boolean functions that satisfy these criteria, yet fail to
be balanced.

Theorem 2.21. A generalized Boolean function f ∈ G B2`
n such that f (x) =

k−1

∑
j=0

2 ja j(x) for
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x ∈ Vn is balanced if and only if all of its Boolean functions a j are balanced, and for each

j and h such that 0≤ j,h≤ k−1 and j 6= h, d(a j,ah) = 2n−1.

Proof. (⇒) Let f ∈ G B2`
n be a balanced generalized Boolean function. Consider the

set of 2` binary vectors (c j)2 which correspond to the unique output values c j ∈ f (Vn),
0 ≤ j ≤ 2`− 1. This set equals V2` , which is balanced with respect to the number of 0’s
and 1’s it contains. Moreover, for each column v j and vh in V2` , d(v j,vh) = 2`−1. Since
each output value of f occurs with frequency 2n−`, this means that each function a j con-
tains n− ` copies of V2` , thus there are 2n−` · 2`−1 = 2n−1 0’s and 2n−1 1’s and for all
Boolean functions, a j and ah, where j 6= h, d(a j,ah) = 2n−1.
(⇐) Let B = {a0,a1, . . . ,ak−1} be a collection of k balanced Boolean functions in n vari-
ables, such that for all j and h such that 0 ≤ j,h ≤ k− 1 and j 6= h, d(a j,ah) = 2n−1.
Let f be a generalized Boolean function f ∈ G B2`

n constructed using B such that f (x) =
∑

k−1
j=0 2 ja j(x), where x ∈ Vn. Consider the composite truth table A =[a0,a1, . . . ,ak−1]. A

consists of 2n binary row vectors of length k. Each Boolean function is balanced and for
any two distinct column vectors (Boolean functions) in A, the pairwise distance between
them is 2n−1. Thus, it must be the case that all vectors in V2` appear in A with frequency
2n−`. Considering the fact that f (x) = ∑

k−1
j=0 2 ja j(x) and each value c j ∈ f (Vn) is also a

binary row vector in A, the result has been demonstrated. �

We can obtain a count for the number of balanced generalized Boolean functions by again
considering the composite truth table A of the set of Boolean functions f ∈ G B2`

n . Let
bG B2`

n represent the set of all balanced generalized Boolean functions. There are
( 2n

2n−1

)
ways in which to select the 2n−1 1’s in a0. For these 1’s, half of the corresponding values
in the second truth table, a1, must be 1’s and the other half must be 0’s. There are

(2n−1

2n−2

)
possible ways to select these 2n−2 1′s. Additionally, for the values of a1 corresponding the
remaining 0’s in a0, half must be 1’s and half must be 0’s. One can certainly proceed in
a similar fashion to get the count, or alternatively, observe that to get a balanced function,
one can choose 2n−` input vectors out of 2n to assign (via f ) the value 0; next choose 2n−`

input vectors out of 2n−2n−` to assign the value 1, etc. That is,

|bG B2`
n |=

(
2n

2n−`

)(
2n−2n−`

2n−`

)
· · ·
(

2n−`

2n−`

)
=

(
2n

2n−`,2n−`, . . . ,2n−`

)
,
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the multinomial coefficient with equal parts, each of size 2n−`.

Definition 2.22. A generalized Boolean function f ∈ G Bq
n is called symmetric if it remains

invariant under the full symmetric group Sn.

The task of constructing symmetric generalized Boolean functions f ∈ G Bq
n, involves par-

titioning Vn into q subsets, each of which contains all input vectors of a specific Hamming
weight. These q subsets are subsequently mapped to unique values from Zq. The number
of vectors in Vn with a given Hamming weight h is

(n
h

)
, thus the cardinality of the subsets

within the partition corresponds to the set of binomial coefficients.

In order to establish exactly how many such functions exist, we proceed as follows: First,
let |sG Bq

n| represent the total number of symmetric generalized Boolean functions for
given n and q. Stirling numbers of the second kind, denoted

{n+1
q

}
, count the number

of ways we can partition the set of n+1 possible weights of binary input vectors of length
n into q nonempty sets. These q nonempty sets must subsequently be mapped to the q

possible output values, which can be arranged in q! possible ways. Therefore,

|sG Bq
n|=

{n+1
q

}
q! =

1
q!

q

∑
i=0

(−1)i
(

q
i

)
(q− i)n+1q! =

q

∑
i=0

(−1)i
(

q
i

)
(q− i)n+1.

Theorem 2.23. A generalized Boolean function f ∈ G B2k

n such that f (x) = a0(x) +
2a1(x) + · · ·+ 2k−1ak−1(x), is symmetric if and only if each of the Boolean functions

ai(x), i ∈ {0,1, . . . ,k−1}, is symmetric.

Proof. Let f ∈ G B2k

n , be a generalized Boolean function such that

f (x) = a0(x)+2a1(x)+ · · ·+2k−1ak−1(x),

ai ∈Bn. We prove the claim using a counting argument. If a generalized Boolean function
G Bq

n is symmetric, its output remains constant for specific weights of the input x. There
are a total of n+ 1 possible weights for x. To each of these weights, we have q possible
output values. Thus there are qn+1 symmetric functions in G Bq

n. If q = 2k, there are
2k(n+1) symmetric functions. Since f (x) = a0(x)+2a1(x)+ · · ·+2k−1ak−1(x), we also see
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that that there are 2n+1 possible symmetric Boolean functions for each ai and a total of
2(n+1)k possibilities. These two counts agree and our claim is thus proved. �

The question of when a Boolean function f ∈Bn is both symmetric and balanced is inter-
esting. Such functions can only exist in the cases where one is able to partition (bisect) the
binomial coefficients into two subsets each of sum 2n−1. Although not the main topic of
this dissertation, we provide a few remarks regarding the subject here due to the disserta-
tion author’s involvement in this research [27].

Letting ∑
n
i=0 δi

(n
i

)
= 0, where δi ∈ {−1,1}, we can represent [δ0, . . . ,δn] as

a solution to the bisection problem. By the binomial theorem, ∑i(−1)n(n
i

)
=

(1−1)n = 0, hence±[1,−1,1,−1, . . .] is always a solution. Moreover, observe
that if n is odd then [δ0, . . . ,δ(n−1)/2,−δ(n−1)/2, . . . ,−δ0] with δi ∈ {−1,1} ar-
bitrary chosen, produces 2(n+1)/2 solutions. These are referred to as trivial
solution. Additional, nontrivial bisections occur sporadically. Letting Jn repre-
sent the set of bisection solutions for a given n, we have the following theorem:

Theorem 2.24. [27] If p is a prime number, then Jp−1 = 2.

Proof. The statement is obviously true if p = 2, so we may assume that p is
an odd prime. We let n = p− 1 and observe that n ≡ −1 (mod p). We want
to show that

(n
j

)
≡ (−1) j (mod p), for every j ∈ {0,1, . . . ,n}. This is clearly

true for j = 0. Since, every j ∈ {1, . . . ,n} has an inverse modulo p, we have
for j ∈ {1, . . . ,n}(

n
j

)
≡ n(n−1) · · ·(n− j+1)

j!

≡ (−1)(−2) · · ·(−1− j+1)
j!

≡ (−1) j (mod p).

Hence, if [δ0, . . . ,δn] a solution of the bisection problem is

0 =
n

∑
j=0

δ j

(
n
j

)
≡

n

∑
j=0

(−1) j
δ j (mod p),
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but the number

∆ :=
n

∑
j=0

(−1) j
δ j ≡ 0 (mod p)

is an odd number (n+1 = p is an odd prime) satisfying

|∆| ≤
n

∑
j=0
|(−1) j

δ j|=
n

∑
j=0

1 = n+1 = p. (2.2)

Because ∆ cannot be zero, the only possible values of ∆ are p or −p. Then the
equality |∆|= p = n+1 in (2.2), forces δ j =±(−1) j, for all j. Therefore, we
have only the two trivial solutions, that is, Jn = 2 [27]. �

Using the Hamming high performance computer (HPC) at the Naval Postgraduate School,
and a parallel computer program written in Julia, (see appendix A2), we were able to ex-
haustively search for nontrivial binomial bisections for n ≤ 51 [27]. We verified the com-
putational data previously provided by [10] and [21] for n < 37, and obtained additional
results for 37≤ n≤ 51. These results have been included in Appendix A.1 and the number
of nontrivial solutions appear as A200147 in the Online Encyclopedia of Integer Sequences.

Looking at the bisection solution data in appendix A.1 we observed some additional pat-
terns. Using some identities, which were first pointed out by Jefferies [21], along with
solutions to diophantine equations, we were able to produce some infinite classes of inte-
gers admitting nontrivial bisections. We present the following from our research without
proof. Additional discourse on this topic along with the proof of the following theorem can
be found in the paper entitled Bisecting binomial coefficients which recently appeared in
the journal Discrete Applied Mathematics [27].

Theorem 2.25. [27] The following hold:

1. If n = k2−2, k ≥ 4 even, then Jn ≥ 10, Jn−1 ≥ 2
n+1

2 +2
n+1

2 −3 (tight).

2. If k ≡ 0,1 (mod 3) and n =
F4k+1+2F4k−6

5 , then Jn ≥ 2
n+1

2 +2
n−3

2 .

3. Let n = 4k2 + 16k + 13,k ≥ 0. Then, there are at least 2(n+1)/2−3

nontrivial bisections for the binomial coefficients
{(n

j

)}
0≤ j≤n

, and so,

Jn ≥ 2
n+1

2 +2
n−1

2 .
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Based on related search data, we make the following conjecture regarding the impossibility
of further sub-dividing the binomial coefficients into equal parts.

Conjecture 2.26. There are no 2k-sections of the binomial coefficients for k > 1.

Should a proof of this conjecture emerge, it would mean that symmetric and balanced
generalized Boolean functions do not exist.
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CHAPTER 3:

Correlation Immune Generalized Boolean Functions

The Devil is in the details, but so is

salvation.

Hyman G. Rickover ????

3.1 Introduction
Siegenthaler first described the correlation attack in 1984 [40]. This type of known plain-
text attack provides cryptanalysts with a method of attacking stream ciphers which are
generated using multiple Linear feedback shift registers (LFSRs) and a nonlinear combiner
which is plagued by a poorly chosen Boolean function. Correlation attacks involve careful
examination of input vectors and their associated functional outputs in order to determine
whether the value of a single bit, or the values of a subsets of bits in the input vector excert
greater influence over the output than others. If this is the case, attackers can use this in-
formation to surmize something about the structure of the underlying Boolean function as
well as the outputs of the LFSRs. Cusick and Stănică provide an example of such a poorly
chosen function in [11, p. 58] that we, for illustrative purposes, provide here.

Example 3.1. Consider the following 3-variable Boolean function f (x) = x1x2⊕ x1x3⊕
x2x3 and its associated truth table:

Input 000 001 010 011 100 101 110 111

Output 0 0 0 1 0 1 1 1

To determine whether or not the value of a single input bit exerts an undue influence over
the output, we use the truth table and compute conditional probabilities for each bit of the
input vectors, x. For example, the probability that the first bit x1 is 0 given the fact that the
function’s output equals 0 is

Pr(x1 = 0| f (x) = 0) =
Pr(x1 = 0∩ f (x) = 0)

Pr( f (x) = 0)
=

3/8
4/8

= 3/4.
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Proceeding similarly, we calculate the conditional probabilities for each of the remaining
possibilities and obtain the results listed in table 3.1.

Table 3.1: Conditional probability table for a Boolean function

Conditional Prob. Given f (x) = 0 Conditional Prob. Given f (x) = 1

Pr(x1 = 0| f (x) = 0) = 3/4 Pr(x1 = 0| f (x) = 1) = 1/4
Pr(x1 = 1| f (x) = 0) = 1/4 Pr(x1 = 1| f (x) = 1) = 3/4

Pr(x2 = 0| f (x) = 0) = 3/4 Pr(x2 = 0| f (x) = 1) = 1/4
Pr(x2 = 1| f (x) = 0) = 1/4 Pr(x2 = 1| f (x) = 1) = 3/4

Pr(x3 = 0| f (x) = 0) = 3/4 Pr(x3 = 0| f (x) = 1) = 1/4
Pr(x3 = 1| f (x) = 0) = 1/4 Pr(x3 = 1| f (x) = 1) = 3/4

Examining the table we see that if the function’s output is zero, the probabilities that each
respective input bit, x1,x2, and x3, equal zero are all .75. From a cryptographic perspective
this is highly undesirable! Armed with this information and known plaintext, an adversary
readily obtains information about the outputs of the LFSRs, which in turn can be used to
launch an attack on each LFSR, thereupon recovering the keystream of the system.

To avoid this unfortunate situation, we need to be more circumspect in how we go about
choosing our Boolean function. To be in a position to select more wisely we initially adopt
a "black box" view of the problem and consider input vectors and the output values to which
they are mapped. We partition the set of input vectors Vn into two sets V0 and V1, such that
∀x∈V0, f (x) = 0 and ∀x∈V1, f (x) = 1. Clearly, in order to not give away any information
to a would-be-attacker, for i = 1,2,3, the conditional probabilities for all x ∈ V0, Pr(xi =

0| f (x) = 0) = Pr(xi = 1| f (x) = 0) = 1/2. Consequently, we recognize that |V0| > 1. If
this were not the case, the output value 0 would appear only once in the function’s truth
table and it would be associated with a single input vector x. This in turn would result in the
probability Pr(xi = 0| f (x) = 0), for each respective index, i, 1≤ i≤ 3, being equal to either
1 or 0. It is, however, possible for |V0| to equal 2 and ensure that the necessary conditional
probabilities hold. Partitioning Vn using complementary input vectors we can construct
a Boolean function f : Vn → F2 with the desired conditional probability properties we
seek. Partition Vn into two subsets, S0, S1, such that ∀x ∈ S j, x̄ ∈ S j and f (x) = f (x̄) = j,
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where j = 0,1. To see that this will produce the desired result, consider the following: For
each pair of vectors, x, x̄∈ S j and each bit xi, where i = 1,2 · · · ,n, there is one vector where
xi = 0 and one vector where xi = 1. This means that if S j contains m pairs of complementary
vectors, then for each i, there are m vectors where xi = 0 and m vectors where xi = 1, which
in turn yields

Pr(xi = 0| f (x) = 0) = Pr(xi = 1| f (x) = 0) =
m/|Vn|
|S j|/|Vn|

=
m/2n

2m/2n =
1
2
.

Equipped with this new-found insight, we tailor the following truth table for our new
Boolean function:

Input 000 001 010 011 100 101 110 111

Output 1 1 1 0 0 1 1 1

Converting the truth table into ANF yields the Boolean function f (x) = 1⊕ x2x3⊕ x1⊕
x1x3⊕x1x2. We subsequently compute the conditional probabilities given in Table 3.2, and
verify that our analysis did in fact render a Boolean function with the desired properties.

Table 3.2: Conditional probability table for an order 1 correlation immune Boolean function

Conditional Prob. Given f (x) = 0 Conditional Prob. Given f (x) = 1

Pr(x1 = 0| f (x) = 0) = 1/2 Pr(x1 = 0| f (x) = 1) = 1/2
Pr(x1 = 1| f (x) = 0) = 1/2 Pr(x1 = 1| f (x) = 1) = 1/2

Pr(x2 = 0| f (x) = 0) = 1/2 Pr(x2 = 0| f (x) = 1) = 1/2
Pr(x2 = 1| f (x) = 0) = 1/2 Pr(x2 = 1| f (x) = 1) = 1/2

Pr(x3 = 0| f (x) = 0) = 1/2 Pr(x3 = 0| f (x) = 1) = 1/2
Pr(x3 = 1| f (x) = 0) = 1/2 Pr(x3 = 1| f (x) = 1) = 1/2

The function which we constructed above is referred to as a correlation immune (order 1)
function. Order 1 refers to the fact that it only satisfies the conditional probability require-
ments for a single bit. It is of course possible to consider larger subsets of bits in the input
vectors of a function. In the above case, f fails in multiple instances when we consider
values assignments of the

(3
2

)
two bit subsets. For example,

Pr(x1 = 0,x3 = 0| f (x) = 1) =
2/8
6/8

= 1/3.
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Correlation attacks take advantage of differences in the conditional probabilities between
subsets of input vector bits and the associated outputs of a function. Seen from this "black
box" perspective, it is of little consequence whether the function’s output is binary or a
subset of values from some other ring Zq (q > 2). If a cryptographer hopes to render a
function immune to this adversarial technique, he must ensure that balanced conditional
probabilities exist for all values of the image of f . Thus far, we have considered output
values c ∈ F2, but we could have just as well considered the output values c ∈ Zq. As
such, there is a very natural extension of the concept of correlation immunity into the do-
main of generalized Boolean functions. With this in mind, we extend Cusick and Stănică’s
definition of correlation immunity from [11, p. 55].

Definition 3.2. A generalized Boolean function f ∈ G Bq
n is said to be correlation immune

of order t, with notation CI(t), 1≤ t ≤ n, if for any fixed subset of t variables the probability
that, given the value of f (x), the t variables have any fixed set of values, is always 2−t , no
matter what the choice of the fixed set of t values is.

When exploring the notion of correlation immunity for generalized Boolean functions, a
fitting place to begin is perhaps by contemplating just how many output values, c ∈ Zq, a
correlation immune generalized Boolean function could possibly achieve.

Theorem 3.3. If f ∈ G Bq
n is a CI (order 1) generalized Boolean function, then the number

of occurrences of each output value c ∈ Zq that f achieves is even.

Proof. Let f ∈ G Bq
n be a CI (order 1) generalized Boolean function. Let x = (xn, . . . ,x1)∈

Vn. Suppose S instances of a specific output value, c ∈ Zq, occur in the truth table of f . Let
Vc ⊂ Vn, represent the set of all vectors x such that f (x) = c. For each i = 1,2, . . . ,n, let
V(0,i) ⊂Vc be the subset of vectors such xi = 0 and f (x) = c and let V(1,i) ⊂Vc be the subset
of vectors such that xi = 1 and f (x) = c. Then, since f is CI(1), for each i = 1,2, . . . ,n we
have

Pr(xi = 0| f (x) = c) =
Pr(xi = 0∩ f (x) = c)

Pr( f (x) = c)
=

|V(0,i)|
2n

|Vc|
2n

=
|V(0,i)|

S
=

1
2

=⇒ |V(0,i)|=
S
2
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and

Pr(xi = 1| f (x) = c) =
Pr(xi = 1∩ f (x) = c)

Pr( f (x) = c)
=

|V(1,i)|
2n

|Vc|
2n

=
|V(1,i)|

S
=

1
2

=⇒ |V(1,i)|=
S
2
.

For each i, xi is either 0 or 1, so V(0,i) and V(1,i) are mutually exclusive. Moreover, |V(0,i)|=
|V(1,i)| for all i, therefore 2 · |V(0,i)|= 2 · |V(1,i)|= S, and the result is thus proven. �

Corollary 3.4. Let f ∈ G Bq
n be a correlation immune (order 1) generalized Boolean func-

tion and let f (Vn) be the image of f . Then | f (Vn)| ≤ 2n−1.

Proof. The result is an immediate consequence of Theorem 3.3. Let f ∈ G Bq
n be a CI(1)

generalized Boolean function. Since the number of occurrences of each distinct output
value c ∈ f (Vn) must be divisible by 2, the maximum number of output values is therefore
|Vn|

2 = 2n

2 = 2n−1. �

Remark 3.5. We have already demonstrated how one can create a CI(1) generalized
Boolean function f ∈ G Bq

n, by ensuring that f (x) = f (x̄), for all x ∈ Vn. By assigning
a distinct value, c ∈ Zq, for each vector pair x, x̄ we achieve the above stated upper bound.

3.2 Correlation Immune Constructions
There are numerous ways in which to construct correlation immune (order 1) Boolean
functions. In addition to the so-called “folklore” construction, that we have touched upon,
a method which we refer to as the “complementation construction” works well. In this
case we create correlation immune (order 1) Boolean functions f ∈Bn using the following
algorithm:

Algorithm 2 CI(1) Complementation Construction for Boolean Functions
1: Write the truth table of f , in which the binary vectors of length n are in lexicographic

order.
2: Label the first 2n−1 entries of the truth table with 2n−2 0′s and 2n−2 1′s in any order

desired.
3: Label the remaining 2n−1 entries of the truth table by copying the first 2n−1 entries of

the truth table into the the second half of the truth table and then complement each of
these entries.
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Example 3.6. Consider the following truth table of a correlation immune order 1 function
f ∈ B4, which was created using the complementation algorithm. In order to highlight
the complementation process and motivate the subsequent proof of correctness of the algo-
rithm, we include the set of input vectors, V4, and place the two halves of the truth table
side-by-side.

Table 3.3: A CI(1) Boolean function f ∈B4

V4 f V4 f

0000 0 1000 1
0001 0 1001 1
0010 1 1010 0
0011 0 1011 1
0100 1 1100 0
0101 1 1101 0
0110 1 1110 0
0111 0 1111 1

Proof of Correctness of the CI(1) Boolean Function Complementation Construction:
Suppose we create a Boolean function f ∈Bn using the preceding algorithm. To show that
the algorithm indeed renders a correlation immune (order 1) function, we argue as follows:
Partition the set of input vectors Vn into two sets, V0 and V1, such that for all x ∈ Vj,
f (x) = j, where j = 0 or j = 1. Let Vj|n−1

represent the set of sub-vectors of the n−1 least
significant bits of Vj. Since the second half of the truth table is a complemented copy of the
first half, Vj|n−1

= Vn−1 for both j = 0 and j = 1. Now, for each column i from 1 to n−1,
we know that Vn−1 is balanced (contains an equal number of 0′s and 1′s), therefore it must
also be the case that each set Vj|n−1

, where j = 0 or 1, is also balanced with respect to the
first n− 1 columns. Moreover, the algorithm required that the first half of the truth table
was balanced, which in turn ensures that the nth column is also balanced in both V0 and V1.
Consequently, for all i from 1 to n, Pr(xi = 0| f (x) = 0) = 1/2, thus demonstrating that the
function is correlation immune (order 1).

The complementation algorithm allows us to create a great many CI(1) Boolean functions.
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Unfortunately, this construction method is not well suited for building correlation immune
(order 1) generalized Boolean functions. For this, we require a more general technique
which partitions Vn into appropriate subsets of input vectors, which each can in turn be
mapped to different output values of Zq. To accomplish this task we generalize the “folk-
lore” construction. This method required that the function be such that for all x ∈ Vn,
f (x) = f (x̄). In other words, f (x) = f (x⊕ a), where wt(a) = n. Recall that a vector
a ∈ Vn is a linear structure of a function f , if the derivative of f with respect to a remains
constant. In other words, for all CI(1) functions f , which were created using the “folklore”
construction, a = 111 . . .1, is a linear structure of f . There is, per se, no reason why we
must choose this linear structure. We might just have well chosen another linear structure.

Algorithm 3 CI(1) generalized Boolean function construction
1: Pick a vector, a ∈ Vn, such that 0≤ κ ≤ n−1 and wt(a) = n−κ .
2: For all x ∈ Vn, pair x with x′ = x⊕a.
3: Vectors within each of the 2n−1 pairs, agree in κ positions. If κ = 0, map each pair to

any desired output value, Zq. Otherwise, for each pair of vectors, combine it with a
corresponding pair of vectors which differ with respect to the bits found at the indices
where 0’s occur in a.

4: Finally, map each of the 2n−2 sets of four vectors to any output value, Zq.

Proof of Correctness of the CI(1) Generalized Boolean Function Construction: Sup-
pose we create a Boolean function f ∈ G Bq

n, where 1 ≤ q ≤ 2n−1, using the above de-
scribed algorithm. The set of input vectors Vn is a linear vector space, so for every a ∈Vn,
using the procedure whereby we for all x ∈ Vn, pair x with x′ = x⊕ a, uniquely parti-
tions Vn into 2n−1 pairs of vectors. Let κ represent the number of zeros contained in a,
so wt(a) = n−κ . Then the vectors, x and x′, within each pair agree in κ of the n index
positions. If κ = 0, each vector pairs can be mapped to any output value c ∈ Zn−1. (This is
the “folklore” construction.) If on the other hand κ > 0, then there are 2κ possible combi-
nations for the bits in the κ indices which correspond to where zeros occur in a. However,
since we have partitioned Vn, and each column of Vn, contains an equal number of 0’s
and 1’s, there must be 2n−1−κ vector pairs which contain each of the 2κ possibilities. This
in turn guarantees that for every vector pair within the partition, it is always possible to
combine two corresponding pairs of vectors which disagree with respect to each of the bits
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found at the indices where zeros occur in a. In fact, for a given a, there are a total of

(2n−1−κ !)2κ−1

such groupings. Once one of these groupings has been carried out, we have ensured that
each set of four vectors contain an equal number of 0’s and 1’s with respect to those indices.
For the remaining indices, a contained all ones, which ensured that each of the 2n−1 vector
pairs already contained a balance of 0’s and 1’s in these positions. Thus, by subsequently
mapping each set of four vectors to an output value c ∈ Zn−2, the algorithm guarantees that
for all i from 1 to n, Pr(xi = 0| f (x) = c) = 1/2. Hence the function is correlation immune
(order 1).

Example 3.7. Suppose we wish to construct a CI(1) generalized Boolean function f ∈
G Bq

4, where 1 ≤ q ≤ 4. Rather than using the all ones vector to partition Vn, we select
instead the vector a = 1010. Letting κ represent the number of zeros in a, we then have
κ = 2 with zeros occurring at index 1 and 3 (indexing from least to most significant bit).
For each x ∈ V4, we pair x with x′ = x⊕a. Doing so yields the following partition:

0000
1010

0010
1000

0100
1110

0110
1100

0001
1001

0011
1001

0101
1111

0111
1101

Since κ = 2, there are 22 = 4 possible two bit combinations for the bits located at index 1
and 3. Moreover, there are 2n−1−κ = 2 pairs of vectors which contain each of the possible
4-bit combinations at indices 1 and 3. We now combine each pair of vectors with a corre-
sponding pair which disagrees with respect to the bits at index 1 and 3. There are a total
of (2n−1−κ !)2κ−1

= (2!)2 = 4 possible ways this can be accomplished. Finally, we map
each of the 2n−2 = 4 sets of vectors to 4 possible output values from Z4. Therefore, based
on our selection of a, there are a total of 44 = 256 possible correlation immune (order 1)
generalized Boolean functions which can be constructed using this algorithm. We list one
such possible function in Table 3.4:
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Table 3.4: A CI(1) generalized Boolean function f ∈ G B4
4

V4 f

0000 0

0001 3

0010 2

0011 1

0100 1

0101 2

0110 3

0111 0

1000 2

1001 1

1010 0

1011 3

1100 3

1101 0

1110 1

1111 2

3.3 A Higher Order Correlation Immune Construction
The above algorithm enables us to construct a large class of order 1 correlation immune
generalized Boolean functions. Although higher order correlation immune functions are
less prevalent, we would none-the-less like to devise an algorithm with which we can con-
struct correlation immune generalized Boolean functions of higher order. Before proceed-
ing we must first introduce the following:

Definition 3.8. [11, p. 72] An m× n array with entries from a set of s elements is called
an orthogonal array of size m with n constraints, s levels, strength t, and index r, if any
set of t columns of the array contain all st possible row vectors exactly r times. We will
throughout this dissertation denote such orthogonal arrays by OA(m,n,s, t).
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There is a close connection between correlation immune Boolean functions and orthogonal
arrays. Camion, et al. first corresponded on this topic in 1992 [3].

Theorem 3.9. Every partition P of Vn which consists of q binary orthogonal arrays, each of

index 1 and strength t, can be used to construct a correlation immune (order t) generalized

Boolean function f ∈ G Bq
n, and every order t correlation immune generalized Boolean

function f ∈ G Bq
n generates a partition P of Vn, where P consist of q binary orthogonal

arrays, each of index 1 and strength t.

Proof. (⇒) Let P be a partition of Vn comprised of q binary orthogonal arrays O j,
0 ≤ j ≤ q− 1, each of index 1 and strength t. For all j and all vectors x ∈ O j, map
x→ c j, where each value c j is a distinct value in Zq. This creates a generalized Boolean
function f ∈ G Bq

n. By Definitions 3.8, any set of t columns of each O j contains all 2t

possible row vectors once. Given the stipulated mapping, this in turn means that according
to Definition 3.2, f is an order t correlation immune generalized Boolean function.
(⇐) Let f ∈ G Bq

n be an order t correlation immune generalized Boolean function. For
each distinct output value c j ∈ Zq, 0 ≤ j ≤ q−1, partition Vn into q subsets O j such that
O j = {x ∈ O j : f (x) = c j}. The function f is correlation immune of order t, therefore
according to Definition 3.2, for any fixed subset of t input vector variables, xi, 1 ≤ i ≤ n,
the probability that, for f (x) = c j, the t variables have any fixed set of values is 2−t . Thus
according to Def. 3.8, each O j must be an index 1, strength t binary orthogonal array. �

Consequently, although not mentioned at the time, the subsets of Vn which were created in
the constructions of Algorithms 2 and 3 were in fact binary orthogonal arrays of index and
strength 1. It is interesting to note that Vn is itself an orthogonal array of strength n. This
is the reason why all constant functions are (order n) correlation immune.

Lemma 3.10. Let O be an OA(m,n,2, t) binary orthogonal array. Complementing any

column, i, 1≤ i≤ n, of O produces another OA(m,n,2, t) binary orthogonal array.

Proof. Let O be an OA(m,n,2, t) binary orthogonal array. Suppose by way of contradiction
that we complement a column, i, 1≤ i≤ n, of O and that the resultant array, O′ is no longer
an orthogonal array. If O′ is not an orthogonal array, it must be the case that there exist some
set of t columns for which one of the 2t possible binary row vectors occurs with a frequency
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less than r. Now, O was an orthogonal array, so for all possible combinations of t columns,
each of the 2t possible binary row vectors in O occurred each with frequency r. The only
changes made to O, took place in column i. Therefore, if one of the 2t possible row vectors
in O′ occurs with a frequency less than r, it must be the case that there exist an unequal
number of 0′s and 1′s in column i of O′. However, since column i in O′ is the complement
of column i from O, this would mean that an imbalance of 0’s and 1’s existed in O, which
in turn would mean that one of the 2t possible binary row vectors of O also occurred with a
frequency less than r. This contradicts the fact that O is an orthogonal array. We therefore
conclude that complementing any column of an orthogonal array, OA(m,n,2, t), results in
another orthogonal array, OA(m,n,2, t). �

Example 3.11. Consider the following 4×3 binary array, X , along with all possible com-
binations of two of its columns:

x1 x2 x3

0 0 0
0 1 1
1 0 1
1 1 0

x1 x2

0 0
0 1
1 0
1 1

x1 x3

0 0
0 1
1 1
1 0

x2 x3

0 0
1 1
0 1
1 0

For every possible combination of 2 columns of X , the row vectors 00, 01, 10, and 11 all
occur with frequency 1. Consequently, this is a OA(4,3,2,2) orthogonal array of index
1. Moreover, according to Lemma 3.10, complementing any column of X , for example
column number 3, produces yet another OA(4,3,2,2) orthogonal array, X ′:

x1 x2 x̄3

0 0 1
0 1 0
1 0 0
1 1 1

There also exists a relationship between orthogonal arrays and error correcting codes [2],
[12], [19]. This connection is due to the fact that the codewords of an error correcting code
can be used as the rows of an orthogonal array, or conversely the rows of an orthogonal
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array can be regarded as codewords of an error correcting code. For purposes which soon
shall become clear, our construction will make use of orthogonal arrays created using linear
error-correcting codes. Neither error-correcting codes nor orthogonal arrays are the focus
of this dissertation. However, due to central role which these topics play in our construc-
tion method of high order correlation immune generalized Boolean function, we deem it
prudent to include a few basic definitions, lemmas, and theorems for the benefit of readers
unfamiliar with these topics. Rather than restating and reproving these results, much of
this intoductory material has been taken from Chapter 4 of Hedayat, Sloane, and Stufken’s
excellent monograph on orthogonal arrays [19]. For consistency’s sake, we retain our finite
field notation Fs, where s is power of a prime, rather than adopt the authors’ notation of
GF(s) found in the original publication.

Definition 3.12. [19, p. 65] An error correcting code C of length n, size m,
minimum pairwise Hamming distance between distinct codewords of d, and
which is defined over an alphabet S of size |S| = s, is denoted (n,m,d)s. To
any such code we associate the m× n array whose rows are the codewords of
C. This array is an orthogonal array OA(m,n,s, t) for some t.

Definition 3.13. [19, p. 63] A code C of length n is said to be linear if the
codewords are distinct and C is a vector subspace of Fn

s , thus C has size m = s`

for some non negative integer 0 ≤ ` ≤ n. Additionally, the minimum distance

d for a linear code is equal to the minimal Hamming weight of any nonzero
codeword.

Definition 3.14. [19, p. 40] An orthogonal array is simple if the rows of the
array are distinct.

Definition 3.15. [19, p. 40] Let s be a prime power. An orthogonal array
OA(m,n,s, t) with levels from Fs is said to be linear if it is simple and if, when
considered as n-tuples from Fs, its m rows form a vector space over Fs.

Lemma 3.16. [19, p. 65] The orthogonal array associated with a code is

linear if and only if the code is linear.
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Proof. This follows immediately from the preceding definitions of linearity.
�

A linear (m,n)-code can be concisely described using an m×n generator ma-
trix, G, in which the rows of the matrix form a basis for the code. The code C,
then consists of all vectors u = xG, where x runs through all x ∈ Sn [19, p. 64].

Example 3.17. The (7,8,4)2 code can be represented using the following generator matrix:

G =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 .
Each of the 23 = 8 codewords can then be obtained by using the encoding function, E(x) =
xG, where x ∈ V3. For example, the codeword associated with the vector x = 010 is:

E(010) =
[
0 1 0

]
·

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

=
[
0 1 0 1 0 1 1

]
.

For each linear code C, there exists an associated linear code called its dual, which we
denote by C⊥. This code consists of all vectors v ∈ Sn such that

uvT = 0, ∀u ∈C.

For example, the dual of the (7,8,4)2 code given in Example 3.17 is a (7,16,3)2 Hamming
code. We refer to a code which is its own dual as a self-dual code. The distance of the dual
code of C is further denoted d⊥.

Lemma 3.18. [19, p. 54] Let A be an orthogonal array OA(m,n,s, t) with

entries from Fs. Then any t columns of A are linearly independent over Fs.
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Proof. m× 1 vectors v1, . . . ,vt with components from a ring R are said to be
linearly independent over R if the relation

c1v1 + · · ·+ ctvt = 0, c1, . . . ,ct ∈ R, (3.1)

implies that c1 = · · · = ct = 0. An equivalent condition is that the matrix
[v1 · · ·vt ] has rank t over R. Now let v1, . . . ,vt be any t columns of A, and
suppose (3.1) holds. There is a row vector i with the first entry equal to 1 and
others 0. Then (3.1) implies c1 = 0. Similarly c2 = · · ·= ct = 0 [19, p. 54]. �

Lemma 3.19. [19, p. 54] Let A be an m×n matrix whose rows form a linear

subspace of Fsk . If any t columns of A are linearly independent over Fs, then A

is an orthogonal array OA(m,n,s, t).

Proof. Suppose m = s`, and let G be an `×n generator matrix for A, so that the
rows of A consist of all n-tuples ξ G, where ξ = (ξ1, . . . ,ξ`), ξi ∈ Fs. Choose
t columns of A, and let G1 be the corresponding `× t submatrix of G. Clearly
the columns of G1 are linearly independent. The number of times that a t-tuple
z appears as a row in these t columns of A is equal to the number of ξ such that

ξ G1 = z.

Since G1 has rank t, this number is s`−t , for all z. Therefore A is an orthogonal
array of strength t [19, p. 54]. �

We are now in a position to introduce the following important theorem which establishes
the connection between orthogonal arrays and linear codes and specifies how the strength of
a linear orthogonal array is related to the associated linear code. Although we use Hedayat’s
proof of the theorem here, the theorem itself is attributed to Bose who included the result
in his 1961 paper [2].
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Theorem 3.20. [19, p. 66] If C is a (n,m,d)s linear code over Fs with

dual distance d⊥ then the codewords of C form rows of an orthogonal ar-

ray OA(m,n,s,d⊥− 1) with entries from Fs. Conversely, the rows of a linear

orthogonal array OA(m,n,s, t) over Fs form a (n,m,d)s linear code over Fs

with dual distance d⊥ ≥ t + 1. If the orthogonal array has strength t but not

t +1, d⊥ is precisely t +1.

Proof. (⇒) Suppose C is a (n,m,d)s linear code over Fs with dual distance
d⊥. Let A be the array formed by the codewords of C. Any d⊥− 1 columns
of A must be linearly independent over Fs, or else there would be a codeword
of weight less than d⊥ in the dual code, which would contradict the hypothesis
that d⊥ is the minimal nonzero distance in the dual code. By Lemma 3.19, A

is an OA(m,n,s,d⊥−1).
(⇐) Conversely, let C be the code associated with a linear OA(m,n,s, t). By
Theorem 3.18, any t columns of the array are linearly independent, so there
cannot be a codeword of weight t or less in c⊥. If the array does not have
strength t + 1, some t + 1 columns are dependent, and so there is a codeword
of weight t +1 in the dual code, hence d⊥ = t +1 [19, p. 66]. �

The concept of dual codes is important in the study of orthogonal arrays. As seen above,
it allowed us to establish the connection between orthogonal arrays and linear codes in the
proof of Theorem 3.20. Moreover, since orthogonal arrays can be created using linear codes
and linear codes are either self-dual or give rise to dual codes, this frequently results in con-
nections between pairs of orthogonal arrays. For example, the codewords of the (7,8,4)2

code, C, from Example 3.17 form a OA(8,7,2,2) orthogonal array, while the code words
of its dual code, C⊥, (7,16,3)2, creates a OA(16,7,2,3) orthogonal array. We shall later
extend the concept of duality to correlation immune generalized Boolean functions which
were created using orthogonal arrays. Having covered a sufficient amount of background
information, we are now in a position to introduce our construction method for higher order
correlation immune generalized Boolean functions. To motivate the technique, we begin
again by considering the “folklore” construction.

Consider a CI(1) function f ∈ G Bq
5, which was created using the folklore construc-
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tion. Here the linear structure, a = 11111, is used to partition V5 and for all x ∈ V5,
f (x) = f (x⊕ a). In particular, the set of input vectors {00000,11111} are mapped to the
same output value. These two vectors constitute the (5,2,5)2 linear code, and by Theorem
3.20, they also form the OA(2,5,2,1) orthogonal array. Viewed from an orthogonal array
perspective, the folklore construction is carried out as follows: Let G = (V5,⊕) represent
the abelian group of binary input vectors formed under the ⊕ operation. OA(2,5,2,1) is a
linear orthogonal array since it was created using the linear code (5,2,5)2. Since (5,2,5)2

is a linear code, it forms a subgroup of G. Let O0 = OA(2,5,2,1). For each lexicographic
ordered input vector x from 00001 to 01111 we form the cosets, Oi, 1 ≤ i ≤ 15, of O0 by
adding x to the each of the two row vectors in O0. Then ∪15

i=0Oi = V5 and we have parti-
tioned V5 into 16 pairs of vectors. Moreover, according to Lemma 3.10, each of the cosets
of O0 is also an (order 1) orthogonal array. Therefore, by mapping the two row vectors
within each orthogonal array, Oi, to the same output value, c ∈ Zq, we have constructed a
CI(1) function.

The benefit of this construction method is that it allows us to use any linear orthogonal array
(m,n,2, t), where m = 2` and n > `, to build a correlation immune (order t) generalized
Boolean function f ∈ G Bq

n, where q = 2n−`.

Algorithm 4 CI(t) generalized Boolean function construction
1: Select a linear orthogonal array A = OA(m,n,2, t), where m = 2` and n > `.
2: for k = 1 to m do
3: Add row vector xk ∈ A to the set O0.
4: end for
5: Add O0 to the set, S, of orthogonal arrays.
6: for j = 1 to 2n−`−1 do
7: Select a vector a j ∈ Vn, such that ∀Ok ∈ S, where k < j, a j 6∈ Ok .
8: for i = 1 to m do
9: Compute yi = xi⊕a j , where xi are row vectors in O0.

10: Add yi to O j .
11: end for
12: Add Oi to S.
13: end for
14: Select a permutation, p, of the set {1,2, . . . ,n}
15: for i = 1 to 2n−` do
16: Reorder the columns, ck , k = 1 to n, of Oi such that O(p)

i = cp1 ,cp2 , . . . ,cpn , where pn is the nth element of p.
17: end for
18: for h = 1 to 2n−` do
19: Select an output value ch ∈ Zq, 2≤ q≤ 2n−`.
20: for i = 1 to m do
21: Save the ordered pair,{xi,ch}, where xi ∈ O(p)

h , to a 2D array, f .
22: end for
23: end for
24: Sort f so that the first elements of each ordered pair, {xi,ch} ∈ f , appear in lexicographic order.



Proof of Correctness of the CI(t) Generalized Boolean Function Construction: Sup-
pose we wish to create a correlation immune (order t) generalized Boolean function
f ∈ G Bq

n using the above described algorithm. We first select a suitable linear orthogonal
array, O0 = OA(m,n,2, t), such that t satisfies the desired correlation immunity order and n

satisfies the required input variable length for our function. Since O0 is a linear orthogonal
array, its row vectors form a subgroup of Vn. Let m = 2`. By selecting an orthogonal array
with m such that 2n−` ≥ q we ensure that our construction can achieve the requisite number
of functional output values, q. Moreover, the fact that O0 is simple and forms a subgroup
of Vn guarantees that O0 along with its 2n−`−1 cosets cover Vn. We construct each coset
Oi, i = 1 to 2n−`− 1, by selecting a vector a ∈ Vn not present in O0 (or any other coset).
Lemma 3.10 tells us that each of these cosets is also an OA(m,n,2, t) orthogonal array.
Having done so, we have thus partitioned Vn into 2n−` orthogonal arrays each of strength
t. We now select one of the n! possible permutations, p = {p1, p2, . . . , pn}, of the integers
{1,2, . . . ,n}, where pn is the nth element of the set p. Let Oi = [c1,c2, . . . ,cn], where c j,
1≤ j≤ n, represents a column vector. We reorder the columns of each orthogonal array Oi

such that O(p)
i = [cp1,cp2 , . . .cpn ]. Since by Definition 3.8, each Oi, i = 0 to 2n−`−1, must

contain all 2t possible row vectors for any combination of t columns, each resultant array
O(p)

i will remain an orthogonal array. Moreover, while the column reordering will alter
the vectors which occur within each orthogonal array O(p)

i , the set of all orthogonal arrays
O(p)

i , i= 0 to 2n−l−1, will still cover Vn. To recognize that this is indeed the case, consider
the following: The set of simple orthogonal arrays S = {O0,O1, . . . ,O2n−`−1} covers Vn.
There are a total of 2n row vectors in Vn, each of which is unique. Since we respect the
same reordering scheme, O(p)

i = [cp1,cp2, . . .cpn], for i = O to 2n−`−1, it must be the case
that each vector in S(p) = {O(p)

0 ,O(p)
1 , . . . ,O(p)

2n−`−1} is also unique. Since there are also 2n

row vectors in S(p), it must be the case that the set of modified orthogonal arrays S(p) also
covers Vn. Finally, to each set of input vectors, O(p)

i we associate an output value ci ∈ Zq,
where q ≤ 2n−`. Since each orthogonal array O(p)

i is strength t, we have thus created a
CI(t) generalized Boolean function f ∈ G Bq

n.

To illustrate the algorithm further, we provide the following example:

Example 3.21. Suppose we wish to construct a higher order (t > 1) correlation immune
generalized Boolean function f ∈ G B4

5. We begin by finding a linear orthogonal array
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suitable for the task. In this case, OA(8,5,2,2) is a good candidate. Let O0 = OA(8,5,2,2).

O0 =

0 0 0 0 0
1 0 0 1 1
0 1 0 1 0
0 0 1 0 1
1 1 0 0 1
1 0 1 1 0
0 1 1 1 1
1 1 1 0 0.

Since OA(8,5,2,2) is a linear orthogonal array, O0’s row vectors form a subgroup of V5.
We can therefore cover V5 by forming the 3 cosets of O0. To do so, we iteratively proceed
as follows: For i = 1 to 3 we form Oi by selecting a vector, a ∈ Vn, which is not present in
all preceding orthogonal array’s, O j, where j < i. Then for each row vector xk ∈ O0, k = 1
to 8, we compute yk = xk⊕a and add it to Oi. Doing so produces the cosets

O1 =

0 0 0 0 1
1 0 0 1 0
0 1 0 1 1
0 0 1 0 0
1 1 0 0 0
1 0 1 1 1
0 1 1 1 0
1 1 1 0 1,

O2 =

0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 1 1
1 1 0 1 1
1 0 1 0 0
0 1 1 0 1
1 1 1 1 0,

O3 =

1 0 0 0 0
0 0 0 1 1
1 1 0 1 0
1 0 1 0 1
0 1 0 0 1
0 0 1 1 0
1 1 1 1 1
0 1 1 0 0.

Lemma 3.10 ensures that these newly formed cosets are all OA(8,5,2,2) orthogonal arrays
in their own right. We now select a permutation, p of the set {1,2, . . . ,5}, say for example
p = {2,1,3,5,4}. For each of the orthogonal arrays, Oi, i = 0 to 3, we rearrange the
columns of Oi such that O(p)

i = [cp(1),cp(2),cp(3),cp(4),cp(5)] = [c2,c1,c3,c5,c4],

O(p)
0 =

0 0 0 0 0
0 1 0 1 1
1 0 0 0 1
0 0 1 1 0
1 1 0 1 0
0 1 1 0 1
1 0 1 1 1
1 1 1 0 0,

O(p)
1 =

0 0 0 1 0
0 1 0 0 1
1 0 0 1 1
0 0 1 0 0
1 1 0 0 0
0 1 1 1 1
1 0 1 0 1
1 1 1 1 0,

O(p)
2 =

0 0 0 0 1
0 1 0 1 0
1 0 0 0 0
0 0 1 1 1
1 1 0 1 1
0 1 1 0 0
1 0 1 1 0
1 1 1 0 1,

O(p)
3 =

0 1 0 0 0
0 0 0 1 1
1 1 0 0 1
0 1 1 1 0
1 0 0 1 0
0 0 1 0 1
1 1 1 1 1
1 0 1 0 0.

By subsequently assigning the same output value from Z4 to the vectors within each or-
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thogonal array, say for example {O(p)
0 → 0,O(p)

1 → 1,O(p)
2 → 2,O(p)

3 → 3}, we create the
CI(2) generalized Boolean function depicted in Table 3.5:

Table 3.5: A CI(2) generalized Boolean function f ∈ G B4
5

V5 a0 a0 a0⊕a1 f

00000 0 0 0 0

00001 0 1 1 2

00010 1 0 1 1

00011 1 1 0 3

00100 1 0 1 1

00101 1 1 0 3

00110 0 0 0 0

00111 0 1 1 2

01000 1 1 0 3

01001 1 0 1 1

01010 0 1 1 2

01011 0 0 0 0

01100 0 1 1 2

01101 0 0 0 0

01110 1 1 0 3

01111 1 0 1 1

10000 0 1 1 2

10001 0 0 0 0

10010 1 1 0 3

10011 1 0 1 1

10100 1 1 0 3

10101 1 0 1 1

10110 0 1 1 2

10111 0 0 0 0

11000 1 0 1 1

11001 1 1 0 3

11010 0 0 0 0

11011 0 1 1 2

11100 0 0 0 0

11101 0 1 1 2

11110 1 0 1 1

11111 1 1 0 3

Given the fact that Algorithm 4 makes use of column permutations when constructing gen-
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eralized Boolean functions, it is of interest to investigate when such actions result in new
orthogonal arrays and partitions of Vn.

Definition 3.22. An orthogonal array whose set of row vectors remains invariant under the
full symmetric group Sn of column permutations is called a symmetric orthogonal array.

Example 3.23. The orthogonal array OA(4,3,2,2):

O =

0 0 0
0 1 1
1 0 1
1 1 0

is a symmetric orthogonal array, since the set of O’s row vectors remain invariant under the
full symmetric group S3 of column permutations.

Remark 3.24. Given an orthogonal array, O = OA(m,n,2, t), it is a relatively straightfor-
ward matter to check whether or not it is symmetric. Let H represent the set of Hamming
weights of all m row vectors in O. In order for O to be a symmetric orthogonal array, for
each Hamming weight, h ∈ H, O must contain all vectors, x ∈ Vn, such that wt(x) = h.

Lemma 3.25. Given a symmetric linear orthogonal array O = OA(2n−1,n,2, t), the re-

maining set of vectors Vn \O also forms a symmetric orthogonal array.

Proof. Let O0 be a symmetric linear orthogonal array OA(2n−1,n,2, t). Since O0 is a linear
orthogonal array, the row vectors of O0 form an order 2n−1 abelian subgroup, O < (Vn,⊕).
We select a vector a ∈ Vn which is not present in O0 and add it in turn to each row vector
in O0. The resultant set of vectors, O1, is the coset of O0 and O0 ∪O1 = Vn. Moreover,
according to Lemma 3.10, O1 is also a OA(2n−1,n,2, t) orthogonal array. Let H represent
the set of Hamming weights of all row vectors in O0. Since O0 is symmetric, it must be the
case that for each, h ∈ H, O0 contains all vectors, x ∈ Vn such that wt(x) = h. This in turn
means that O1 contains all vectors y∈Vn such that wt(y)∈Zn \H, thus demonstrating that
O1 is also a symmetric orthogonal array. �

Definition 3.26. A partition of Vn which remains invariant under the full symmetric group
Sn of column permutations is called a symmetric partition.
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Remark 3.27. Lemma 3.25 demonstrates the fact that binary symmetric linear orthogonal
arrays with n constraints and size 2n−` give rise to symmetric partitions of Vn. However, it
is possible for a partition containing subsets, some of which are not symmetric, to nonethe-
less be symmetric. To illustrate the point, consider the following:

Example 3.28. Below we list the linear orthogonal array O0 = OA(2,4,2,1) along with its
7 cosets:

O0 =
0 0 0 0
1 1 1 1

O1 =
0 0 0 1
1 1 1 0

O2 =
0 0 1 0
1 1 0 1

O3 =
0 1 0 0
1 0 1 1

O4 =
1 0 0 0
0 1 1 1

O5 =
0 0 1 1
1 1 0 0

O6 =
0 1 0 1
1 0 1 0

O7 =
1 0 0 1
0 1 1 0.

While O0 clearly is a symmetric linear orthogonal array, given that it remains invariant
under all column permutations, each of its cosets are not. Despite this fact, the set of all
orthogonal arrays, P = {O0,O1, . . . ,O7}, is nonetheless symmetric. The reason for this is
that P forms a group under the set Σ of the 4! column permutations. For example, for one
such column permutation σ = 4123

σ =
(

O0 O1 O2 O3 O4 O5 O6 O7

O0 O4 O1 O2 O3 O7 O6 O5

)
= (O1O4O3O2)(O5O7).

Proposition 3.29. The partition of Vn used in the folklore CI(1) construction is symmetric.

Proof. The folklore construction partitions Vn into 2n−1 pairs of complementary vectors.
Every column in each pair contains complementary bits. For each vector pair x and x̄, any
column permutation σ therefore produces a pair of complementary vectors x′ and x̄′. Since
each vector in the partition is unique and σ is applied to all vector pairs, the permutation
results in 2n−1 pairs of complementary vectors. �

A nonsymmetric partition of Vn gives rise to multiple partitions of Vn under the set of
column permutations. The exact number of resultant partitions depends upon the partition
in question, but is bounded above by n! .

Theorem 3.30. Let O = OA(2`,n,2, t), n > `, be a linear orthogonal array, and let F

represent the set of distinct correlation immune (order t) generalized Boolean functions
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f ∈ G Bq
n, where q = 2n−`. The number |F | of distinct CI(t) generalized Boolean functions

that can be constructed using O and Algorithm 4 is bounded by:

(2n−`)
2n−`
≤ |F | ≤ n!(2n−`)

2n−`
.

Proof. Let O = OA(2`,n,2, t), ` < n− 1, be a linear orthogonal array. If O is symmetric
and gives rise to a symmetric partition P of Vn, the set of partitions produced by column
permutations is singular. Since O is a linear orthorgonal array, O along with its 2n−`− 1
cosets (each of which also are OA(2`,n,2, t) orthogonal arrays) therefore cover Vn. In order
to ensure correlation immunity (order t) we assign the same output value to all row vector
within each of the 2n−` orthogonal arrays. Assigning a unique value to each orthogonal
array establishes the maximum size of the image of f , | f (Vn)| = 2n−`. For each of the
2n−` orthogonal arrays in P there are q = 2n−` choices for the output value, which in turn
establishes the stated lower bound of (2n−`)

2n−`
. If, on the other hand, the partition P is

nonsymmetric, then the set of column permutations will produce several distinct partitions
of Vn. Consider the extreme case: Suppose O contains row vectors, each of which has
unique Hamming weight and each column of O is also unique. In this case, each of the n!
column permutations of O would produce a unique orthogonal array O(p). Each of these is a
linear orthogonal array, and thus along with its cosets gives rise to a unique partition of Vn.
Each of the n! partitions contain 2n−` orthogonal arrays, so the maximum size of the image
of f is again | f (Vn)| = 2n−`. For each of the 2n−` orthogonal arrays in a given partition,
there are q = 2n−` choices for the output value. Hence, as before, for each partition there
are (2n−`)

2n−`
possible ways of assigning OA-output value pairs. Thus, the upper bound

for the total number of CI(t) generalized Boolean function we can construct with O and

Algorithm 4 is bounded above by n!(2n−`)
2n−`

. �

Given the construction method of Algorithm 4, the maximum number of output values
which correlation immune generalized Boolean function f ∈ G Bq

n can achieve is 2n/m,
where m is the size of the linear orthogonal array OA(m,n,2, t). We use this fact along with
the Singleton bound to establish bounds on the size of the image of f .

Theorem 3.31 (Singleton bound for CI(t) generalized Boolean functions). Let f ∈ G Bq
n,

be a CI(t) generalized Boolean function constructed using a linear orthogonal array
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OA(m,n,2, t) and Algorithm 4. Then the size of the image of f is bounded by

2d−1 ≤ | f (Vn)| ≤ 2n−t ,

where d is the minimum distance of the linear code associated with the linear orthogonal

array.

Proof. Let O be the linear orthogonal array OA(m,n,2, t) which was used to construct f

in accordance with Algorithm 4. Let C denote the linear code associated with O, let |C|
denote the number of codewords in C, and let d denote minimum distance for C. Then
m = |C|. C is a linear code, therefore it is simple. From Theorem 4.20 [19, p. 79] we know
that, for a set of vectors C of length n with minimal distance d and strength t

st ≤ |C| ≤ sn−d+1,

where s is the vector alphabet size and the right-hand side bound assumes that C is a simple
code. Letting s = 2 we then have:

2t ≤ |C| ≤ 2n−d+1.

Algorithm 4 partitions Vn into subsets of size m, each of which is subsequently assigned an
output value from Zq. The maximum size of the image of f is therefore 2n/m = 2n/|C|.
This number is largest when |C| is smallest and vice versa. Therefore:

2n−(n−d+1) ≤ | f (Vn)| ≤ 2n−t ,

which establishes the stated bounds on the cardinality of the image of f . �

Proposition 3.32 (CI(t) generalized Boolean functions duality). Let O be an OA(m,n,2, t)
linear orthogonal array and let C be its corresponding (n,m,d)2 linear code. Let C⊥ be

the dual code of C and let O⊥ represent the dual orthogonal array associated with C⊥.

Let F represent the set of correlation immune (order t) generalized Boolean functions that

can be constructed using O and Algorithm 4. If n is odd, or if n is even and the Hamming

weight of at least one of O’s row vectors is not divisible by 2, then there exists a set F⊥ of
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correlation immune generalized Boolean functions which can be constructed using O⊥.

Proof. This is a direct consequence of Theorem 3.20 and the existence of dual codes. Bi-
nary linear (even or doubly-even) self-dual codes occur when n is even and the Hamming
weight of each codeword is divisible by 2 or 4 respectively [26, p. 27]. By stipulating that
either n be odd, or n be even and O contain at least one row vector which is divisible by 2,
we ensure that C is not a self-dual code. This means that a distinct O⊥ linear orthogonal
array exists which can in turn be used in conjunction with Algorithm 4 to generate F⊥. �

Proposition 3.33. Let u ≥ 1, ` ≤ n− 1 and q ≤ 2n−`. When constructing correlation im-

mune functions using Algorithm 4, CI(2u) functions f ∈ G Bq
n exist if and only if CI(2u+1)

functions f ∈ G Bq
n+1 exist.

Proof. This is a direct consequence of Theorem 2.24 by Hedayat, Sloane and Stufken
[19, p. 28], which states: An OA(m,n,2,2u) orthogonal array exists if and only if an
OA(2m,n,2,2u+1) orthogonal array exists. In the interest of brevity, we omit their proof
here. The interested reader may refer to their work for the proof of this orthogonal array
result. �

There are many known linear orthogonal arrays which are suitable for constructing higher
order correlation immune generalized Boolean functions f ∈ G Bq

n using the method out-
lined in Algorithm 4. Using [19] and [41] we have, for the benefit of the reader, compiled
an (incomplete) list of function parameters, n, q and t, along with the parameters of corre-
sponding known linear orthogonal arrays in Table 3.6. Additionally, several of these linear
orthogonal arrays can be found in Appendix C.
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Table 3.6: Some orthogonal arrays and associated generalized Boolean function parameters

n q≤ CI(t) OA

5 4 2 OA(8,5,2,2)

6 4 3 OA(16,6,2,3)

7 16 2 OA(8,7,2,2)
7 8 3 OA(16,7,2,3)

8 16 3 OA(16,8,2,3)

9 4 5 OA(27,9,2,5)

12 4 7 OA(210,12,2,7)

15 211 2 OA(16,15,2,2)
15 28 3 OA(27,15,2,3)
15 27 4 OA(28,15,2,4)

16 211 3 OA(32,16,2,3)
16 32 7 OA(211,16,2,7)

18 8 9 OA(215,18,2,9)

20 211 5 OA(29,20,2,5)

24 214 5 OA(210,24,2,5)
24 212 7 OA(212,24,2,7)

31 226 2 OA(32,31,2,2)

32 226 3 OA(64,32,2,3)
32 221 5 OA(211,32,2,5)
32 26 15 OA(226,32,2,15)

3.4 New From Old Correlation Immune Generalized Boolean
Functions

In his original paper [40], Siegenthaler provided a construction of a large class of corre-
lation immune (order t) functions on n+ 1 variables by concatenating the truth tables of
two n variable correlation immune (order t) Boolean functions. This method, along with
the proof of its correctness, can be found in Cusick and Stănică’s book on Cryptographic
Boolean functions [11, p. 74]. We extend here their theorem (4.20) so that it applies to gen-
eralized Boolean functions. Before doing so, it is however necessary for us to generalize
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Lemma 4.2 (f) [11, p. 56], also contained in their aforementioned monograph.

Lemma 3.34. Let f ∈G Bq
n be a generalized Boolean function and let x= (x1, . . . ,xn)∈Vn

be an input vector of f . Let y = (xi(1), . . . ,xi(t)) be made up of an arbitrary choice of t of

the variables xi, and let y0 = (y1, . . . ,yt) be any fixed binary t-vector. Let wt( f |c) denote

the number of occurrences of c in the truth table of f . If f is correlation immune of order

t, then for all y and for each y0, Pr( f (x) = c|y = y0) = Pr( f (x) = c) = wt( f |c)
2n .

Proof. Let f ∈ G Bq
n be a correlation immune (order t) generalized Boolean function.

Then, since f is correlation immune of order t, for all c we have

Pr(y= y0| f (x)= c)=
Pr(y = y0∩ f (x) = c)

Pr( f (x) = c)
=

1
2t =⇒ Pr(y= y0∩ f (x)= c)=

Pr( f (x) = c)
2t

and

Pr( f (x)= c|y= y0)=
Pr( f (x) = c∩y = y0)

Pr(y = y0)
=

Pr( f (x) = c)
2t ·Pr(y = y0)

=
Pr( f (x) = c)

2t ·2−t =
wt( f |c)

2n .

�

Theorem 3.35. Let x = (x1, . . . ,xn) and suppose that we have correlation immune (order t)

generalized Boolean functions, f1, f2 ∈ G Bq
n, such that ∀c∈ f1(Vn) = f2(Vn), Pr( f1(x) =

c) = Pr( f2(x) = c) = p. Then the function f of n+1 variables defined by

f (x,xn+1) = xn+1 f1(x)+(xn+1⊕1) f2(x) (3.2)

is also correlation immune of order t and satisfies Pr( f (x) = c) = p.

Proof. Let y = (xi(1), . . . ,xi(t)) be made up of an arbitrary choice of t of the variables, xi,
and let y0 = (y1, · · · ,yt) be any fixed binary t-vector. Then since f1 and f2 do not depend
on xn+1 we have for either fixed choice of the bit b, and i = 1 or 2,

Pr( fi = c|y = y0,xn+1 = b) = Pr( fi = c|y = y0) = Pr( fi = c), (3.3)

where the second equality follows from our hypothesis that fi is correlation immune of
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order t and using Lemma 3.34 above. Now (3.2) and (3.3) imply

Pr( f = c|y = y0,xn+1 = 1) = Pr( f1 = p)

and
Pr( f = c|y = y0,xn+1 = 0) = Pr( f2 = p)

so we obtain
Pr( f = c|y = y0,xn+1 = b) = Pr( f = c) = p.

This implies that the value of f is independent of the choice of any subset of t of the n+1
input variables, so f is correlation immune of order at least t. �

Example 3.36. Table 3.7 provides an example of generalized Boolean functions which was
constructed using Theorem 3.35.

Table 3.7: A Siegenthaler constructed CI(1) function f ∈ G B4
4

V4 a0 a1 f
0000 0 0 0
0001 1 1 3
0010 0 1 2
0011 1 0 1
0100 1 0 1
0101 0 1 2
0110 1 1 3
0111 0 0 0
1000 0 1 2
1001 1 0 1
1010 1 1 3
1011 0 0 0
1100 0 0 0
1101 1 1 3
1110 1 0 1
1111 0 1 2

In the above example we see how correlation immune (order 1) Boolean functions can be
used to construct new correlation immune (order 1) generalized Boolean functions. Care
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must however be taken to ensure that all stipulated requirements are satisfied by the two se-
lected generalized Boolean functions before proceeding with the construction. To illustrate
the point, consider the following example in Table 3.8:

Table 3.8: A correlation immune generalized Boolean function construction failure

V3 a0 a1 f

000 1 0 1

001 0 1 2

010 0 1 2

011 1 0 1

100 0 0 0

101 1 1 3

110 1 1 3

111 0 0 0

In this case, both Boolean functions a0 and a1 are CI(1), yet the generalized Boolean func-
tion f fails to be correlation immune. The cause of the failure lies in the fact that, in
order for the generalized Siegenthaler construction to work, Theorem 3.35 requires that
the two generalized Boolean functions f1 and f2 are such that ∀c ∈ f1(Vn) = f2(Vn),
Pr( f1(x) = c) = Pr( f2(x) = c) = p. In this instance, f1(Vn) = {1,2} 6= {0,3} = f2(Vn).
This disagreement between the output values in the first and second half of the truth table
of f results in the associated conditional probabilities not equaling the required values. For
example, Pr(x1 = 1| f (x) = 3) = 1.

3.5 Necessary and Sufficient Conditions for Correlation
Immune Generalized Boolean Functions

Suppose, as depicted in Figure 3.1, we wish to design a q-ary sequence generator that uses
k linear feedback shift registers (LFSRs) which in turn feed a generalized Boolean function
f ∈ G Bq

n, f (x) = ∑
k−1
j=0 2 ja j(x), where a j ∈Bn.
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Registers:

LFSRk−1

LFSR0

LFSR1

···

f ∈ G Bq
n :

ak−1

a0

a1

···

q-ary output

Figure 3.1: q-ary sequence generator

Suppose further that we wish to ensure that our function is immune to correlation attacks.
Considering the problem for a moment, we quickly recognize that the q-ary nature of the
output sequence does not provide any additional security. By binary expansion of each of
the output values in the sequence, an attacker could simply employ a divide-and-conquer
approach and perform k separate correlation attacks, one on each of our function’s k con-
stituent Boolean functions a j. Clearly in order for a generalized Boolean function f ∈G Bq

n

used in this manner to be considered correlation immune, the governing CI criteria must be
satisfied by each of the constituent Boolean functions a j, 0≤ j ≤ k−1.

Lemma 3.37. Let f ∈G Bq
n be a correlation immune (order t) function and let Vn represent

the set of binary input vectors, x = (xn, . . . ,x1). Let c ∈ f (Vn) be an output value of f

and Vc = {x ∈ Vn : f (x) = c}. Let y = (xi(1), . . . ,xi(t)) be an arbitrary choice of t of the

variables, xi, and let y0 = (y1, . . .yt) be any fixed binary t-vector. Assume that there exists

a partition Vc = ∩r
i=1Wi, Wi∪Wj = /0, i 6= j, and for all W ∈ {W1, . . . ,Wr} and for each y0,

Pr(y = y0 | f |W = c) = 2−t . Then for all U = ∪i⊆{1,2,...,r}Wi, Pr(y = y0 | f |U = c) = 2−t ,

for each y0.

Proof. Let f ∈ G Bq
n be a correlation immune (order t) function. Let c ∈ f (Vn) be an

output value of f and let Vc = {x ∈ Vn : f (x) = c}. Let {W1, . . . ,Wr} be mutually disjoint
sets which partition Vc such that for every Wi ∈ {W1, . . . ,Wr} and ∀y and each y0: Pr(y =

y0 | f |Wi) = 2−t . Without loss of generality, let U be an arbitrary union of s sets chosen
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from {W1, . . . ,Wr}, where 2≤ s≤ r. Since for each Wi involved in U and ∀y and each y0:
Pr(y = y0 | f |Wi = c) = 2−t , it must be the case that there are 2−t |Wi| vectors x ∈Wi, which
satisfy each condition y = y0 for each subset Wi. The subsets Wi are disjoint, therefore, the
total number of vectors which satisfy each specific condition, y = y0, is

|W1|
2t +

|W2|
2t + · · ·+ |Ws|

2t =
1
2t

s

∑
i=1

Wi =
1
2t |U |.

This in turn means that Pr(y = y0 | f |U = c) = 2−t , regardless of our choice of U . �

Theorem 3.38. If f is a correlation immune (order t) generalized Boolean function, then

all of its constituent Boolean functions are also correlation immune (order t).

Proof. Let x ∈Vn and let f ∈ G Bq
n be a correlation immune (order t) generalized Boolean

function, where f (x) = ∑
k−1
j=0 2 ja j(x), a j ∈Bn. Suppose c ∈ f (Vn). Let c2( j) represent

the jth bit of the binary expansion of c, such that f (x) = c and a j(x) = c2( j). Since,
c2( j) ∈ F2, for each function a j, the binary expansion of the elements of f (Vn) partition
Vn into disjoint sets V0(1),V0(2), . . . ,V0(r) and V1(1),V1(2), . . . ,V1(s), such that r+ s = | f (Vn)|
and for all x ∈ V0(γ), where 1 ≤ γ ≤ r, a j(x) = 0 and for all x ∈ V1(δ ), where 1 ≤ δ ≤ s,
a j(x) = 1. Let y= (xi(1), . . . ,xi(t)) be made up of an arbitrary choice of t of the variables, xi,
and let y0 = (y1, . . . ,yt) be any fixed binary t-vector. Then, since f is correlation immune
(order t), for each y0 and for every c ∈ f (Vn), we know that Pr(y = y0| f (x) = c) = 2−t .
This in turn means that for each V0(γ) and each V1(δ ): Pr(y = y0 | f |V0(γ)(x) = 0) = Pr(y =

y0 | f |V0(δ )(x)= 0)= 2−t . Turning our attention to the Boolean function, a j, this implies that
for each y0 and every V0(γ) and V1(δ ): Pr(y= y0 | a j|V0(γ)(x) = 0) =Pr(y= y0 | a j|V0(δ )(x) =
0) = 2−t . This can be viewed as a relabeling of f ’s outputs from c to c2( j). If it were not
possible to succeed in doing so, it would mean that f failed to be CI(t) for one or more of
its output values c. Given this partitioning of a j into individually CI(t) components, we let
V0 = ∪r

η=1V0(γ) and V1 = ∪s
τ=1V1(δ ) and apply Lemma 3.37 which tells us that for each y0,

Pr(y = y0 | a j|V0(x) = 0) = Pr(y = y0 | a j|V1(x) = 1) = 2−t , thus demonstrating that for all
j, 0≤ j ≤ k−1, a j is a correlation immune (order t) Boolean function. �

Theorem 3.38 guarantees that generalized Boolean functions which are correlation im-
mune are not susceptible to binary output decomposition followed by correlation attacks

48



carried out on its Boolean function components. However, since cryptographers may wish
to construct correlation immune generalized Boolean functions using correlation immune
Boolean function as building blocks, we would also like to establish the criteria under
which such functions ensure the resultant generalized Boolean function is correlation im-
mune. As previously observed in Table 3.8, the fact that a generalized Boolean function f

has Boolean functional components, all of which are correlation immune, is not sufficient
to ensure that f itself is correlation immune.

Lemma 3.39. Let X and Y be rectangular arrays, each containing m rows of binary vectors

of length n.

X =


x11 x12 · · · x1n

x21 x22 · · · x2n
...

xm1 xm2 · · · xmn

 Y =


y11 y12 · · · y1n

y21 y22 · · · y2n
...

ym1 ym2 · · · ymn



Let x j and y j represent the jth column vector of each respective array. Then, X and Y

contain identical multisets of row vectors if and only if, for all j, 1 ≤ j ≤ n, wt(x j) =

wt(y j) and the pairwise distances between column vectors, d(x j,xk) = d(y j,yk) for all

combinations j,k, where 1≤ j,k ≤ n.

Proof. (⇒) Let X and Y be rectangular arrays each of which contain m rows of binary
vectors of length n. Let the row vectors of X and Y be exhaustively constructed using iden-
tical multisets of size m. Let x j and y j represent the jth column vector of each respective
array. For each array, there are m! orderings of the row vectors. Without loss of generality,
select one such ordering for X and one ordering for Y . Now, X and Y were exhaustively
constructed using row vectors taken from identical multisets, so despite any possible dif-
ferent orderings, for all j, 1 ≤ j ≤ n, wt(x j) = wt(y j). For each array, X and Y , we now
create

(n
2

)
sub-arrays X( j,k) and Y( j,k) where each row i, from 1 to m, has elements (xi j,xik)

or (yi j,yik), respectively. Since X and Y have row vectors taken from identical multisets of
size m, for each possible combination j and k, 1 ≤ j,k ≤ n, it must also be the case that
each sub-array X( j,k) and Y( j,k) form identical multisets of two element row vectors. In or-
der for d(x j,xk)) 6= d(y j,yk)) it would mean that X( j,k) and Y( j,k) had different multisets of
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two-element row vectors. Since this is not the case, we conclude that d(x j,xk) = d(y j,yk)

for all combinations j,k, where 1≤ j,k ≤ n.

(⇐) Let X and Y be two rectangular arrays each containing m rows of binary vectors
of length n. Let x j and y j represent the jth column vector of each respective array, and
let X and Y be such that for all j, 1 ≤ j ≤ n, wt(x j) = wt(y j) and for all combinations of
columns j,k, where 1≤ j,k≤ n, d(x j,xk) = d(y j,yk). For each array, create

(n
2

)
sub-arrays

X( j,k) and Y( j,k) where each row i, from 1 to m, has elements (xi j,xik) or (yi j,yik) respec-
tively. To each sub-array, X( j,k) and Y( j,k) associate the 3-tuple (wt(x j),wt(xk),d(x j,xk)) or
(wt(y j),wt(yk),d(y j,yk)), respectively. Now, d(x j,xk)) = ∑

m
i=1 xi j⊕ xik and d(y j,yk)) =

∑
m
i=1 yi j⊕ yik. Therefore, the parity of the bits in each specific column of row i differ for

each bit combination (1⊕ 0 and 0⊕ 1) which contributes to the cumulative distance be-
tween the column vectors. This is also the case for bit combinations (1⊕ 1 and 0⊕ 0)
which do not contribute to the cumulative distance. Consequently, it is not possible to ob-
tain two similar distance values between column vectors using different bit combinations,
without altering the respective column weights. Our 3-tuples (wt(x j),wt(xk),d(x j,xk))

and (wt(y j),wt(yk),d(y j,yk)) are therefore unique irrespective of row vector order. Since
wt(x j) = wt(y j) for all i, 1 ≤ i ≤ n and d(x j,xk) = d(y j,yk) for all combinations of
columns j,k, where 1 ≤ j,k ≤ n, it must be the case that (wt(x j),wt(xk),d(x j,xk)) and
(wt(y j),wt(yk),d(y j,yk)) agree for all X( j,k) and Y( j,k). We have thus shown that X and Y

must contain the same multisets of row vectors. �

Theorem 3.40. Let f = f1‖ f2 be a generalized Boolean function created using the gen-

eralized Siegenthaler construction in Theorem 3.35, such that f ∈ G Bq
n+1, f1, f2 ∈ G Bq

n,

and f1 and f2 are both correlation immune (order t) functions. Let f1(x) = ∑
k−1
j=0 2 ja j(x)

and f2(x) = ∑
k−1
j=0 2 jb j(x), where a j,b j ∈Bn and x ∈ Vn. Then f is correlation immune

(order t) if and only if for all j and h, 0≤ j,h≤ k−1, the Boolean functions a j and b j are

such that wt(a j) = wt(b j) and the pairwise distances d(a j,ah) = d(b j,bh).

Proof. (⇒) Let f ∈ G Bq
n+1 be a generalized Boolean function created by concatenating

two CI(t) generalized Boolean functions f1, f2 ∈ G Bq
n in accordance with Theorem 3.35.

The function f is correlation immune (order t), so it must be the case that for all x ∈ Vn

and all output values c ∈ Zq, c ∈ f1(Vn)∩ f1(Vn), and Pr( f1(x) = c) = Pr( f2(x) = c). Let
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c2( j) represent the jth bit of the binary expansion of c, such that for 0≤ j≤ k−1, f1(x) = c

and a j(x) = c2( j) and f2(z) = c and b j(z) = c2( j). Consider the two 2n× k arrays of truth
table values for a j and b j:

a0 a1 · · · ak−1 f1

a1,0 a1,1 · · · a1,k−1 f1,1

a2,0 a2,1 · · · a2,k−1 f2,1

a3,0 a3,1 · · · a3,k−1 f3,1
...

...
...

...

a2n,0 a2n,1 · · · a2n,k−1 f2n,1

b0 b1 · · · bk−1 f2

b1,0 b1,1 · · · b1,k−1 f1,2

b2,0 b2,1 · · · b2,k−1 f2,2

b3,0 b3,1 · · · b3,k−1 f3,2
...

...
...

...

b2n,0 b2n,1 · · · b2n,k−1 f2n,2

Since the probabilities of c occurring in the two functions must be equal, the number of in-
stances of c in f1 and f2 must be the same. This in turn means that the number of instances
of c2 occurring as a row vector must be the same for both arrays. By Lemma 3.39 the two
arrays are such that for all j and h, 1 ≤ j,h ≤ k− 1, wt(a j) = wt(b j), and all pairwise
distances d(a j,ah) = d(b j,bh).

(⇐) Let f1 and f2 be two n-variable correlation immune (order t) generalized Boolean
functions. Let f1(x) = ∑

k−1
j=0 2 ja j(x), and f2(x) = ∑

k−1
j=0 2 jb j(x), where a j,b j ∈ Bn and

x ∈ Vn. For all j and h , where 0 ≤ j,h ≤ k− 1, let the Boolean function truth tables
be such that wt(a j) = wt(b j) and d(a j,ah) = d(b j,bh). This ensures that each function’s
2n× k array of Boolean values contain the same multisets of binary row vectors. For each
k-long binary vector c2 in each multisets, there exists a corresponding value c ∈ Zq in
respective truth tables of f1 and f2. Thus if the frequency of each distinct binary row vector
agrees between the two multisets, so too does the frequency of each value c in f1 and f2.
We therefore conclude that for all c, Pr( f1(x) = c) = Pr( f2(x) = c). Moreover, since f1

and f2 also agree with respect to dimension and correlation immunity order, we satisfy the
requisite preconditions under which the generalized Siegenthaler construction may be used.
Carrying out the construction we thus create the generalized Boolean function f = f1‖ f2,
where f ∈ G Bq

n+1. According to Theorem 3.35 this function is correlation immune of
order t. �
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Theorem 3.41. Let f ∈ G Bq
n be the generalized Boolean function f (x) = ∑

k−1
j=0 2 ja j(x),

where 0 ≤ j ≤ k− 1, a j ∈Bn and x ∈ Vn. Then f is correlation immune (order t) if and

only if all Boolean functions a j are CI(t) and use the same partition P of Vn consisting of

q orthogonal arrays, O j, each of strength t.

Proof. (⇒) Let f and the functions a j be as described. Let P be a partition of Vn con-
sisting of q orthogonal arrays, Oh, 0 ≤ h ≤ q− 1, each of strength t. Suppose that
for all Oh ∈ P each function a j uses the partition P. Then for each h and all vectors,
x ∈Oh, (a0(x),a1(x), . . . ,ak−1(x)) is a unique binary vector c2, and a0(x)+2a1(x)+ · · ·+
2k−1ak−1(x) = c ∈ Zq is thus a unique output value for f . Consequently, f is correlation
immune (order t).
(⇐) Let f ∈ G Bq

n be a correlation immune (order t) generalized Boolean function. Then
according to Theorem 3.9, associated with f there is a partition P consisting of q strength
t orthogonal arrays, Oh, 0≤ h≤ q−1, such that for each distinct output value ch ∈ f (Vn),
there exist an Oh such that Oh = {x ∈ Oh : f (x) = ch}. Since f (x) = ∑

k−1
j=0 2 ja j(x), this

means that for each c and all Boolean functions, a j, there must exist an Oh such that
Oh = {x ∈ Oh : (a0(x),2a1(x), . . . ,2k−1ak−1(x)) = ch}. This in turn means that each
Boolean function a j utilizes the partition P. Moreover, by applying Lemma 3.37 to P

and each respective Boolean function a j, we conclude that a j is CI(t). �

3.6 Correlation Immunity and the Walsh-Hadamard Trans-
form

The Walsh transform is a very useful tool when studying Boolean functions. Cusick and
Stănică provide the following lemma regarding correlation immunity of order t in their
book on Cryptographic Boolean Functions and Applications [11]:

Lemma 3.42. [11, p. 56]
A [Boolean] function f (x) in n variables is correlation immune of order t, 1≤ t ≤ n, if and

only if all of the Walsh transforms

W f (w) = ∑
x∈Vn

(−1) f (x)⊕x·w = 0, 1≤ wt(w)≤ t.

52



It is certainly possible to define a correlation immunity notion based on the Walsh-
Hadamard transform for generalized Boolean functions. To this end, we say that a gen-
eralized Boolean function f ∈ G Bq

n is generalized correlation immune of order t, denoted
gCI(t), if and only if H f (w) = 0, where for all w, with 1≤ wt(w)≤ t. One naturally won-
ders whether or not this concept is equivalent to the probabilistic paradigm under which we
have thus far been operating. We demonstrate in fact, that a function that is CI(1), is also
gCI(1), but the converse is in general not true. For simplicity’s sake, we consider here only
the case when t = 1. The basic approach taken in the theorem that follows can however
also be used to prove the cases when t > 1.

Theorem 3.43. Let f ∈ G Bq
n be a generalized Boolean function. If f is CI(1), then f is

gCI(1).

Proof. Let f ∈ G Bq
n be a generalized Boolean function and let w ∈ Vn and wt(w) = 1.

That is, w = (0, . . . ,0,
i
↓
1,0, . . . ,0), for some i. Now,

H f (w) = ∑
x

ζ
f (x)(−1)w·x

= ∑
x,xi=0

ζ
f (x)(−1)w·x + ∑

x,xi=1
ζ

f (x)(−1)w·x

=
q−1

∑
c=0

x, f (x)=c
xi=0

ζ
c(−1)w·x +

q−1

∑
c=0

x, f (x)=c
xi=1

ζ
c(−1)w·x

=
q−1

∑
c=0

x, f (x)=c
xi=0

ζ
c−

q−1

∑
c=0

x, f (x)=c
xi=1

ζ
c

=
q−1

∑
c=0

η0cζ
c−

q−1

∑
c=0

η1cζ
c =

q−1

∑
c=0

(η0c−η1c)ζ
c,

where η0c = |{x| f (x) = c,xi = 0} and η1c = |{x| f (x) = c,xi = 1}. Since f is CI(1), η0c =

η1c for all c, therefore H f (w) = 0. �

Unfortunately, as we previously discovered when exploring balancedness in Chapter 2,
things in the generalized setting have a tendency of becoming a bit more complicated than
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that which one experiences in the classical Boolean environment. Such is also the case
when it comes to correlation immunity. While the probabilistic point of view we have
thus far been operating under is consistent with the correlation immunity notion using the
generalized Walsh-Hadamard transform, the converse is in general not true. To see that this
is indeed the case, consider the following generalized Boolean function f ∈ G B4

4.

Table 3.9: A non−CI(1) function f ∈ G B4
4, where H f (w) = 0

V4 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

f 0 0 0 2 0 2 2 0 2 0 1 3 3 1 0 0

The 4th root of unity is ζ4 = i. Letting w ∈ {0001,0010,0100,1000}, we compute H f (w),
which yields the following:

H f (0001) = i0 + i0 + i0 + i2 + i2 + i1 + i3 + i0− i0− i2− i2− i0− i0− i3− i1− i0 = 0,

H f (0010) = i0 + i0 + i0 + i2 + i2 + i0 + i3 + i1− i0− i2− i2− i0− i1− i3− i0− i0 = 0,

H f (0100) = i0 + i0 + i0 + i2 + i2 + i0 + i1 + i3− i0− i2− i2− i0− i3− i1− i0− i0 = 0,

and

H f (1000) = i0 + i0 + i0 + i2 + i0 + i2 + i2 + i0− i2− i0− i1− i3− i3− i1− i0− i0 = 0.

Since the generalized Walsh-Hadamard transform, H f (w) equals 0 for each Hamming
weight 1 vector w, the function f is gCI(1). However, by inspection, one quickly ob-
serves that f is not CI(1). For example, the two occurrences of the output value 1 both
occur in the second half of the truth table. Thus, when considering the most significant
(lexicographically ordered) bit position i = 4, one must conclude that f cannot be CI(1).

3.7 Rotation Symmetric Correlation Immune General-
ized Boolean Functions

Having discussed several methods of constructing correlation immune generalized Boolean
functions, we now turn our attention to correlation immune generalized Boolean functions,
which are also rotation symmetric. Rotation symmetric Boolean functions were introduced
by Pieprzyk and Qu in 1999 [33], though they appear in the work of Filiol and Fontaine [15]
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as idempotents, the preceding year. These functions remain invariant under cyclic rotations
of their input vectors, and are of particular importance as components of cryptographic
hashing algorithms, where they reduce computational complexity by allowing reuse of re-
sults obtained in previous iterations of an algorithm. Building upon our previously devel-
oped foundation of orthogonal array aided constructions, we will in this section extend the
approach and demonstrate a method for constructing correlation immune and rotation sym-
metric generalized Boolean functions. Before embarking on this endeavor, we cover the
following requisite material.

We adopt Cusick and Stănică’s notation and generalize the definition of rotation symmetric
Boolean functions from [11, p.121].

Let (x1,x2, . . . ,xn) ∈ Vn. For 1≤ κ ≤ n we define

ρ
κ
n (xi) =

xi+κ if i+κ ≤ n,

xi+κ−n if i+κ > n,

which naturally extends to vectors.

Definition 3.44. A generalized Boolean function f is rotation symmetric (RotS) if and only
if for any (x1,x2, . . . ,xn) ∈ Vn,

f (ρκ
n (x1, . . . ,xn)) = f (x1, . . . ,xn),

for any 1≤ κ ≤ n.

Definition 3.45. [19, p. 88] A linear code is called cyclic if whenever

(c0,c1, . . . ,ck−2,ck−1) (3.4)

is a codeword, then so too is
(c1,c2, . . . ,ck−1,c0) (3.5)

(that is, codewords are invariant under cyclic rotations).

Definition 3.46. [19, p. 88] An orthogonal array O, denoted
←−
OA(m,n,2, t), is cyclic if it is

linear and whenever (3.4) is a row vector in O, then (3.5) is a row vector in O.
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As is customary in coding theory, we concisely represent a set of cyclic vectors using
a single vector in angled brackets. Let x = (x1,x2, . . . ,xn), then for κ = 1 to n, 〈x〉 =
ρκ

n (x1,x2, . . . ,xn). For example: 〈0001〉= {1000,0100,0010,0001}. Additionally, given a
vector x ∈ Vn, we define its cyclic period, px, where 1≤ px ≤ n, as px = |〈x〉|.

Definition 3.47. A partition of Vn which remains invariant under the set of column rota-
tions ρk

n(xi), 1≤ k ≤ n, is called a rotation symmetric partition.

Several of the previously discussed linear codes and linear orthogonal arrays were cyclic.
Our new construction of RotS and CI(t) generalized Boolean functions relies upon cyclic
orthogonal arrays. To highlight our approach, we revisit a familiar orthogonal array.

Example 3.48. Suppose we wish to construct a RotS and CI(1) generalized Boolean func-
tion f ∈ G B4

4. We begin again with the linear orthogonal array O0 = OA(2,4,2,1). As
seen in Example 3.28, this orthogonal array is symmetric and thus must also be RotS. As
before, we list O0 along with its 7 cosets:

O0 =
0 0 0 0
1 1 1 1,

O1 =
0 0 0 1
1 1 1 0,

O2 =
0 0 1 0
1 1 0 1,

O3 =
0 1 0 0
1 0 1 1,

O4 =
1 0 0 0
0 1 1 1,

O5 =
0 0 1 1
1 1 0 0,

O6 =
0 1 0 1
1 0 1 0,

O7 =
1 0 0 1
0 1 1 0.

In order for f to be both RotS and CI(1), we must first be able to partition Vn is such a way
that

1. Each subset of the partition forms an orthogonal array, and
2. The partition must be rotation symmetric.

The first task is accomplished using the previously outlined partitioning technique which
employs a linear orthogonal array along with its cosets, each of which are orthogonal arrays
in their own right. However, in order to satisfy the second requirement, we select as our
starting point a cyclic orthogonal array. Moreover, once the cosets have been formed, we
group them in such a way as to ensure that each group of orthogonal arrays contains all
vectors, x ∈ V4 from the same cyclic class, 〈x〉. Having done so, we then map all vectors
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within each group to the same output value, Zq. Given that

〈0001〉= {0001,0010,0100,1000}

〈1110〉= {1110,1101,1011,0111}

〈0011〉= {0011,0110,1100,1001}

〈0101〉= {0101,1010},

we can for example achieve our goal using the following mapping:

{O0→ 0,{O1,O2,O3,O4}→ 1,O6→ 3,{O5,O7}→ 2}.

Doing so produces the RotS and CI(1) generalized Boolean function in Table 3.10

Table 3.10: A RotS and CI(1) generalized Boolean function f ∈ G B4
4

V4 f

0000 0
0001 1
0010 1
0011 2
0100 1
0101 3
0110 2
0111 1
1000 1
1001 2
1010 3
1011 1
1100 2
1101 1
1110 1
1111 0
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Algorithm 5 RotS and CI(t) generalized Boolean function construction
1: Select a cyclic linear orthogonal array O0 =

←−
OA(m,n,2, t), where m = 2` and n > `.

2: Store row vectors of Oo to array V .
3: Create an array of arrays, P.
4: Create two arrays F and I.
5: Store 1 in I.
6: for i = 1 to 2n−1 do
7: x = i2
8: if x /∈V and x /∈ P then
9: Construct set of cyclic vectors 〈x〉.

10: Compute px = |〈x〉|.
11: Store (Px,〈x〉) to P.
12: end if
13: i++

14: end for
15: Sort P such that (Px,〈x〉) tuples appear in ascending order with respect to Px.
16: for j = 0 to length.P(outer)−1 do
17: cnt = 0
18: for k = 1 to P[ j][0]−1 do
19: if P[ j][k] /∈V then
20: for h = 0 to m−1 do
21: vh =V [h]⊕P[ j][k]
22: Store vh to V
23: end for
24: cnt ++

25: end if
26: k++

27: end for
28: store cnt to I.
29: j++

30: end for
31: Set q← length.I
32: Create set Zq = {0,1, . . . ,q−1}
33: start← 0
34: end← m−1
35: for i = 0 to q−1 do
36: Select an output value ci ∈ Zq.
37: for k = start to end do
38: Store (V [k],ci) to F .
39: end for
40: start← end +1
41: end← end + I[i] ·m
42: end for
43: Sort tuples of F such that input vectors appear in lexicographic order.
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Proof of Correctness of RotS and CI(t) Generalized Boolean Function Construction:
Suppose we wish to construct a RotS and CI(t) generalized Boolean function f ∈ G Bq

n

using Algorithm 5. As was the case with Algorithm 4, we begin by selecting a suit-
able linear orthogonal array. In this case, however, we stipulate that the orthogonal array
O0 =

←−
OA(2`,n,2, t), (n > `), must also be cyclic. To ensure the function is correlation im-

mune, Algorithm 5 retains the general approach of partitioning Vn using O0 along with
its cosets, all of which also are orthogonal arrays. However, in order to also achieve rota-
tion symmetry, the way in which we go about creating and grouping these cosets has been
slightly modified. For each vector x∈Vn\O0, we construct the set of vectors, 〈x〉. For each
unique cyclic class,〈x〉, we compute its associated period, px = |〈x〉| and store (px,〈x〉) to
an array of arrays, P. Once this task has been accomplished, we sort the tuples of P such
that the px values appear in increasing order. Using vectors in P, Algorithm 5 then forms
the 2n−`−1 cosets of O0 in the familiar manner. O0 is a simple linear orthogonal array and
its row vectors form a subgroup of Vn. Using O0 along with its cosets, the algorithm there-
fore creates a partition of Vn. Each coset within the partition is unique and in accordance
with Lemma 3.10, also is an OA(m,n,2, t) orthogonal array. There is however, no guaran-
tee that the cosets are cyclic. Consequently, in order to ensure that cosets which contain
vectors belonging to the same cyclic class get grouped together, the algorithm successively
builds cosets using the vectors within the same cyclic classes in P, and keeps track of the
membership boundaries of the vectors within groupings of cosets using the index array I.
To demonstrate that this method of grouping orthogonal arrays produces a rotation sym-
metric partition of Vn, we argue as follows: O0 is a cyclic orthogonal array, hence for every
row vector y ∈ O0, O0 contains the set 〈y〉 of every vector which is a cyclic rotation of y.
Select a vector x such that x ∈ Vn \O0, and form the cyclic set 〈x〉, containing all possible
vectors which are cyclic rotations of x. Let z = y⊕ x. Suppose that for some κ , where
1 ≤ κ ≤ n, there exist a cyclic rotation ρκ

n such that ρκ
n (z) /∈ B, where B is the set defined

as B = {y⊕x |y ∈ 〈y〉,x ∈ 〈x〉}. ρκ
n (z) = ρκ

n (y⊕x) = ρκ
n (y)⊕ρκ

n (x). Therefore, in order
for ρκ

n (z) /∈ B it would imply that either ρκ
n (y) /∈ 〈y〉 or ρκ

n (x) /∈ 〈x〉, neither of which by
definition are possible. We therefore conclude that the set of vectors B is cyclic. Given the
fact that O0 is a subgroup of Vn, it clearly must contain a minimum of two cyclic classes,
namely 〈0〉, as well as at least one additional class 〈y〉, where y ∈ O0. However, the way
in which we construct the cosets guarantees that the vectors from all cyclic classes in O0
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are added to all the vectors in the cyclic class 〈x〉. Moreover, since O0 contains the identity
element 0 we can be assured that each vector within a given cyclic class 〈x〉 will appear in
a coset of O0.

Remark 3.49. In order to avoid constructing duplicate orthogonal arrays, the algorithm
takes care to check after each iteration whether or not the next vector in the generating
set 〈x〉 occurred in the previously constructed coset. For example, If O0 = {0000,1111}
and we were using the set 〈0101〉= {0101,1010} to form a set of cyclic cosets of O0, the
first coset constructed (using 0101) would be {0101,1010}. However, the second vector
1010 ∈ 〈0101〉 already appeared in the coset produced, therefore the algorithm would not
use it again, but rather skip it, determine that the set 〈0101〉 had been exhausted, and write
the index of the last vector in the set of cosets to the index array, I, before proceeding to
the next array element in P.

Algorithm 5 terminates once the number of vectors in the set V is 2n. At this point it will
contain 2n−` orthogonal arrays and be a partition of Vn. The index array I keeps track of
how many cosets each cyclic class 〈x〉 produces, thus enabling the required grouping of
orthogonal arrays. By counting the number of elements in I, the algorithm determines the
number of distinct functional output values, q, achievable in the construction. By subse-
quently assigning the same output value, ci ∈ Zq, for i = 0 to q−1, to every vector within a
set of orthogonal arrays, the algorithm not only ensures the function is correlation immune
(order t), but that it also is rotation symmetric.

Example 3.50. Suppose we wish to construct a RotS and CI(2) generalized Boolean func-
tion f ∈ G B4

7. We first select the cyclic
←−
OA(8,7,2,2) linear orthogonal array:

O0 =

0 0 0 0 0 0 0
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1.

The Algorithm begins by storing the row vectors of O0 to the array V . It initializes an array
of arrays P and initializing an array I with the value 1. For each vectors x ∈ V7 \O0, the
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algorithm checks that x /∈ P, then constructs the cyclic set of vectors 〈x〉. It subsequently
computes the period Px = |〈x〉| and stores (Px,{〈x〉}) to P. Once all cyclic sets of vectors
that are not in O0 have been constructed and stored in P along with their associated periods,
the algorithm will begin to use the vectors within these cyclic classes to construct the cosets
of O0. Since in this example n is prime, all vectors in V7 are either period 1 or period 7. For
any orthogonal array, there are only two period 1 vectors, namely 0 and 1. The 0 vector is
the additive identity in G = (V7,⊕), and thus must be in O0 given the fact that O0 is a linear
orthogonal array and O0 < G. However, as luck would have it, 1 is not in O0. This means
that the first entry in P will be (1,{111111111111111}) and the first set of cyclic cosets
which Algorithm 5 constructs will only include the following cyclic orthogonal array:

O1 =

1 1 1 1 1 1 1
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0 .

Once the last of these vectors has been added to the set V , the set of generating vectors
within this entry of P have been exhausted. The algorithm will then store the number of
cosets which were created, in this case 1, to the index array I, before moving on to the next
entry in P, which is:

(7,{0000001,1000000,0100000,0010000,0001000,0000100,0000010}).

Using these vectors, the algorithm in turn constructs and stores the following seven cosets
to V :

O2 =

0 0 0 0 0 0 1
1 0 1 1 1 0 1
0 1 0 1 1 1 1
0 0 1 0 1 1 0
1 0 0 1 0 1 0
1 1 0 0 1 0 0
1 1 1 0 0 1 1
0 1 1 1 0 0 0,

O3 =

1 0 0 0 0 0 0
0 0 1 1 1 0 0
1 1 0 1 1 1 0
1 0 1 0 1 1 1
0 0 0 1 0 1 1
0 1 0 0 1 0 1
0 1 1 0 0 1 0
1 1 1 1 0 0 1,

O4 =

0 1 0 0 0 0 0
1 1 1 1 1 0 0
0 0 0 1 1 1 0
0 1 1 0 1 1 1
1 1 0 1 0 1 1
1 0 0 0 1 0 1
1 0 1 0 0 1 0
0 0 1 1 0 0 1,

O5 =

0 0 1 0 0 0 0
1 0 0 1 1 0 0
0 1 1 1 1 1 0
0 0 0 0 1 1 1
1 0 1 1 0 1 1
1 1 1 0 1 0 1
1 1 0 0 0 1 0
0 1 0 1 0 0 1,
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O6 =

0 0 0 1 0 0 0
1 0 1 0 1 0 0
0 1 0 0 1 1 0
0 0 1 1 1 1 1
1 0 0 0 0 1 1
1 1 0 1 1 0 1
1 1 1 1 0 1 0
0 1 1 0 0 0 1,

O7 =

0 0 0 0 1 0 0
1 0 1 1 0 0 0
0 1 0 1 0 1 0
0 0 1 0 0 1 1
1 0 0 1 1 1 1
1 1 0 0 0 0 1
1 1 1 0 1 1 0
0 1 1 1 1 0 1,

O8 =

0 0 0 0 0 1 0
1 0 1 1 1 1 0
0 1 0 1 1 0 0
0 0 1 0 1 0 1
1 0 0 1 0 0 1
1 1 0 0 1 1 1
1 1 1 0 0 0 0
0 1 1 1 0 1 1.

Once this is done, the algorithm will save the value 7 to I and then move to the next entry
in P, which happens to be:

(7,{0000011,1000001,1100000,0110000,0011000,0001100,0000110}).

Using this set of vectors, the algorithm produces the final seven cosets:

O9 =

0 0 0 0 0 1 1
1 0 1 1 1 1 1
0 1 0 1 1 0 1
0 0 1 0 1 0 0
1 0 0 1 0 0 0
1 1 0 0 1 1 0
1 1 1 0 0 0 1
0 1 1 1 0 1 0,

O10 =

1 0 0 0 0 0 1
0 0 1 1 1 0 1
1 1 0 1 1 1 1
1 0 1 0 1 1 0
0 0 0 1 0 1 0
0 1 0 0 1 0 0
0 1 1 0 0 1 1
1 1 1 1 0 0 0,

O11 =

1 1 0 0 0 0 0
0 1 1 1 1 0 0
1 0 0 1 1 1 0
1 1 1 0 1 1 1
0 1 0 1 0 1 1
0 0 0 0 1 0 1
0 0 1 0 0 1 0
1 0 1 1 0 0 1,

O12 =

0 1 1 0 0 0 0
1 1 0 1 1 0 0
0 0 1 1 1 1 0
0 1 0 0 1 1 1
1 1 1 1 0 1 1
1 0 1 0 1 0 1
1 0 0 0 0 1 0
0 0 0 1 0 0 1,

O13 =

0 0 1 1 0 0 0
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 0 1 1 1 1
1 0 1 0 0 1 1
1 1 1 1 1 0 1
1 1 0 1 0 1 0
0 1 0 0 0 0 1,

O14 =

0 0 0 1 1 0 0
1 0 1 0 0 0 0
0 1 0 0 0 1 0
0 0 1 1 0 1 1
1 0 0 0 1 1 1
1 1 0 1 0 0 1
1 1 1 1 1 1 0
0 1 1 0 1 0 1,

O15 =

0 0 0 0 1 1 0
1 0 1 1 0 1 0
0 1 0 1 0 0 0
0 0 1 0 0 0 1
1 0 0 1 1 0 1
1 1 0 0 0 1 1
1 1 1 0 1 0 0
0 1 1 1 1 1 1.

Once these cosets have been saved to V , the algorithm stores the value 7 to I. Having stored
all 2n vectors to V , the loop that builds cosets terminates. Using the array I, the algorithm
then determines the number of sets, q, into which the orthogonal arrays were grouped. For
each of these groups, it chooses a value from ci ∈ Zq, i = 0 to q− 1. Using I it computes
the start and end boundries for each group of vectors and for k = start to end within each
group it saves (V [k],ci) to a function array F . Due to the considerable size of the function,
we omit, in the interest of space, a complete table of input and output values and represent
instead the mapping created by the algorithm:
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{O0→ c0,O1→ c1,{O2, . . . ,O8}→ c2,{O9, . . . ,O15}→ c3},

that guarantees that our function is both RotS and CI(2).

Lemma 3.51. Given a cyclic linear orthogonal array O =
←−
OA(2n−1,n,2, t), the remaining

set of vectors Vn \O also forms a cyclic orthogonal array, O =
←−
OA(2n−1,n,2, t).

Proof. The proof uses an argument similar to the one found in Lemma 3.25. Let O0 be a
cyclic linear orthogonal array

←−
OA(2n−1,n,2, t). Since O0 is a linear orthogonal array, the

row vectors of O0 form an order 2n−1 abelian subgroup of Vn under ⊕. Select a vector
a ∈ Vn not present in O0 and add it in turn to each row vector in O0 thereby forming
the coset, O1, to O0. Then O0 ∪O1 = Vn and according to Lemma 3.10, O1 is also a
OA(2n−1,n,2, t) orthogonal array. Since O0 is cyclic, for all row vectors x ∈ O0, 〈x〉 ⊆ O0.
Thus, for all remaining row vectors y ∈ Vn \O0 it must be the case that 〈y〉 ⊆ Vn \O0,
proving that O1 also is a cyclic

←−
OA(2n−1,n,2, t) orthogonal array. �

Theorem 3.52. Let O0 =
←−
OA(2`, p,2, t) be a cyclic linear orthogonal array, where p is

prime and p > `+ 1. If 1 /∈ O0, then it is always possible, using Algorithm 5, to create a

RotS and CI(t) generalized Boolean function, f ∈ G Bq
p, where q is at least 3.

Proof. O0 is a linear orthogonal array, so it along with its cosets will partition Vp into
2p−` ≥ 4 orthogonal arrays of strength t. Since O0 is cyclic, 1 is a period 1 vector, and
1 /∈ O0, we can form the cyclic coset O1 using 1. Although the remaining 2p−`−2 cosets
may not be cyclic, by assigning distinct output values ci ∈ Z3 for i = 0 to 2 such that:

{O0→ c0,O1→ c1,{O2, . . . ,O2p−l−1}→ c2},

we produce a RotS and CI(t) generalized Boolean function f ∈ G B3
p. In the event there

exist s additional cyclic cosets in the set {O2, . . . ,O2p−`−1}, then we can construct a RotS

and CI(t) generalized Boolean function f ∈ G Bq
p, where q≤ 3+ s. �

Definition 3.53. We adopt Cusick and Stănică’s notion from [11, p. 113] and denote gn as
the cardinality of the partition of Vn into cyclic classes.
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Cusick and Stănică provide the following formulae for gn in Theorem 5.68 and Corollary
5.69 of [11, p. 127]. We make use of these result in subsequent theorems and thus include
their result here, albeit without proof. The interested reader may refer to their cited work
as well as [45] and [46] for proofs and further discourse on the stated results.

Theorem 3.54. [11, p. 127]

gn =
1
n ∑

τ|n
φ(τ)2n/τ ,

where φ(τ) is Euler’s phi-function.

If n = p, p prime, it possible to obtain a simpler expression. In this case,

gp =
1
n ∑

τ|n
φ(τ)2n/τ = 2+

2p−2
p

.

Lemma 3.55. The number of possible RotS generalized Boolean functions in G Bq
n is at

most g(n)g(n).

Proof. In order to construct a RotS generalized Boolean function, we partition Vn into
cyclic classes, of which there are g(n). All vectors within each cyclic class is mapped to
the same output in Zq. For each partition there are q choices for the output values. Thus,
all told there are qg(n) possible functions. Since q≤ g(n). The result is established. �

Lemma 3.56. If a linear orthogonal array of the form OA(2, p,2,1), where p is an odd

prime, is used to construct a cyclic partition of Vp containing 2p−1 orthogonal arrays,

then the maximum obtainable number of subsets is 1+ 2p−1−1
p .

Proof. Since p is prime, each vector in Vp is either period 1 or period p, and Theorem 3.54
tells us that there will be a total of 2+ 2p−2

p cyclic classes. The construction requires that
each orthogonal arrays consists of two vectors x ∈ Vp and its complement x̄. Each cyclic
class of vectors 〈x〉 is therefore grouped with 〈x̄〉, thus causing the total number of subsets
in the partition to be: (

2+
2p−2

p

)
/2 = 1+

2p−1−1
p

.

�
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Theorem 3.57. The number of possible RotS and CI(1) generalized Boolean functions,

f ∈ G Bq
p, q ≤ 1 + 2p−1−1

p , constructed using a linear orthogonal array of the form

OA(2, p,2,1), where p is an odd prime is:

(
1+

2p−1−1
p

)1+ 2p−1−1
p

.

Proof. Observe that for all p, the number of orthogonal arrays, 2p−1, in the partition is
strictly greater that 1+ 2p−1−1

p . By applying Lemmas 3.55 and 3.56 the result immediately
follows. �

Remark 3.58. A surprising consequence of Conjecture 2.26 should it prove to be true, is
that balanced and symmetric generalized Boolean functions, where q > 2, do not exist.
This however, is not the case with balanced and RotS generalized Boolean functions.

Example 3.59. Consider constructing a 4-variable RotS generalized Boolean function. We
partition V4 into its 6 cyclic classes: 〈0000〉, 〈1111〉, 〈0101〉, 〈0001〉, 〈0011〉, 〈0111〉,
of respective periods 1,1,2,4,4,4. Therefore, by mapping the classes of input vectors to
output values in Z4 in the following manner, we create a balanced RotS generalized Boolean
function f ∈ G B4

4:

{{〈0000〉,〈1111〉,〈0101〉} → c0,〈0001〉 → c1,〈0011〉 → c2,〈0111〉 → c3},

where ci, with i = 0 to 3, are distinct values in Z4.

Lemma 3.60. For an odd prime p and k > 2, it is not possible to partition Vp into k equally

sized cyclic subsets.

Proof. Since p is prime, the only possible periods for vectors in Vp are 1 or p. The only
two period 1 vectors in Vp are 0 and 1. All remaining vectors have period p. We wish
to partition Vp into k subsets, each of which is cyclic. All vectors within a given cyclic
class must therefore be contained in the same subset. However, since k > 2 and p is an odd
prime, there is no way in which to distribute 0 and 1 among the k subsets which will ensure
they all are of equal cardinality. �
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Theorem 3.61. There are no balanced and RotS generalized Boolean functions f ∈ G Bq
p,

for odd prime, p, and q > 2.

Proof. The result is an immediate consequence of Lemma 3.60. �
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CHAPTER 4:

Avalanche Criteria for Generalized Boolean Functions

War is the realm of uncertainty.

Information is the resolution of

uncertainty. Cryptology is the gateway

between these entropy states.

Carl von Clausewitz, Claude Shannon,

and yours trulyQ

4.1 Introduction
It is important that functions that are used in cryptographic applications are resistant to
attacks involving the use of knowledge of the input to infer anything about the output. In
the preceding chapter we examined correlation immunity properties of generalized Boolean
functions. We will now explore the so-called “avalanche effect” whereby a small change
in the input of a function results in a large, but in some sense uniform, change to the output
of the function. Such a condition, now referred to as the strict avalanche criterion was first
defined by Webster and Tavares [50] in their research on designing good Substitution boxes
(S-boxes). This area of research is of particular relevance to generalized Boolean functions
as well, in part due to their potential use as components in look-up tables and S-boxes of
future cryptographic systems.

Definition 4.1. [11, p. 31] A Boolean function f (x) in n variables is said to satisfy the
strict avalanche criterion (SAC) if changing any one of the n bits in the input vector x
changes the output of the function for exactly half of the 2n−1 possible input vectors, x.
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4.2 A Strict Avalanche Criterion Construction for Boolean
Functions

Given the fact that we will be examining input vectors which differ by a single bit along
with their associated functional output values, it is very natural to make use of hypercubes.
The idea of enlisting the aid of hypercubes in the study of SAC functions is admittedly not
original. It was first adopted by Biss in 1998 [1], albeit with a combinatorial approach and
not the graph theoretic point of view which we adopt here.

Definition 4.2. [9, p.25] A hypercube of dimension n, denoted Hn, is the graph whose
vertex set is the set of n long binary vectors x ∈ Vn and where two vertices are adjacent in
the graph if they differ by exactly one bit.

Example 4.3. Below we depict the hypercubes, H1 and H2. Notice that adjacent vertices
within each graph differ by one bit:

H1 : H2 :

0

1

10 00

0111

There is a simple recursive method by which hypercubes can be built. H2 is obtained by
taking two copies of H1 and connecting the corresponding (similarly labeled) vertices in
both graphs. The vertex labels are then updated as follows: In the first copy of H1, append
0 to the front of each vector x, thereby obtaining the new label ,”0x”. For the second copy
of H1 append 1 to the front of each vector, thus producing the new vector ”1x”.

We represent a Boolean function f ∈Bn using the n-dimensional hypercube Hn = (Vn,E),
where Vn is the vertex set and E is the edge set of the graph. Denote ε = {x j,xh} as an
edge in the graph, where x j,xh ∈Vn are distinct vertices in Hn. We label each vertex x∈Vn

with the tuple (x, f (x)), where f (x) ∈ F2. For each edge ε ∈ E, we label ε with the value
1 if f (x j) = f (xh) and with 0 otherwise.

Example 4.4. Adopting this approach we represent the below Boolean function f ∈B2

using the depicted labeled graph H2:
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V2 f
00 0

01 0

10 1

11 1

Labeled H2 :

10, 1 00, 0

01, 011, 1

1 1

0

0

Having established a graph-theoretic frame of reference from which to work, we first con-
sider the conditions under which our labeled hypercube will satisfy the SAC feature for
Boolean functions. All vertices differing by exactly one bit in Hn are connected by an
edge. Moreover, should any pair of such vertices agree with respect to their output values,
the edge between them is labeled with a value of 1. Given the fact that the total number of
edges in a hypercube is 2n−1n, it is clear that under this Boolean function model paradigm,
a Boolean function will be SAC if and only if the sum of the edge set labels of its associated
graph Hn equals 2n−2n. We refer to labeled hypercubes which satisfy this requirement as
SAC hypercubes.

When attempting to construct SAC Boolean functions, one can use the fact that hypercubes
can be constructed recursively to one’s advantage. By utilizing two appropriately chosen
SAC hypercubes Hn,1, Hn,2, which once connected will have 2n−1 newly formed edges la-
beled with 1’s, (in other words, half of Hn,1 and Hn,2’s corresponding vertices agree with
respect to their output values), the newly formed hypercube Hn+1 will also be SAC. In order
to be in a position to carry out such constructions, we must first analyze and derive the SAC
hypercube "base case" if you will. We do so by contemplating how the vertices of these
graphs can be labeled with output values in order to obtain the requisite edge label sum.
Considering first H1, we see that there clearly is no way in which this can be accomplished,
since it only contains one edge. Turning our attention to H2, we consider the number of
different ways this labeling can be carried out.

Theorem 4.5. There are 12 possible SAC labelings of the 2 dimensional hypercube.

Proof. Without loss of generality, we choose to begin labeling at the lower right vertex
and proceed counter-clockwise around H2. Given the vertex labeling vector y = y1y2y3y4,
where i = 1 to 4 and yi ∈ F2, the labeling scheme will thus be as follows:
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y4

y3

y1

y2

For n > 2, we will use the Hn label vector w = y‖z, where y and z are labeling vectors for
hypercubes Hn−1.

There are a total of ∑
4
i=0
(4

i

)
= 16 possible vectors y, which we represent using the fol-

lowing cyclic classes:
〈0000〉= {0000}

〈0001〉= {0001,0010,0100,1000}

〈0011〉= {0011,0110,1100,1001}

〈1110〉= {1110,1101,1011,0111}

〈0101〉= {0101,1010}

〈1111〉= {1111}.

To determine whether a labeling satisfies our requirements, we evaluate y as follows:

n

∑
i=1

yi · yi+1,

where

yi+1 =

yi+1 if i+1≤ n,

yi+1−n if i+1 > n.

If this sum equals 2, then y is acceptable, otherwise it is not. Among the possible labelings,
0000 and 1111 will of course not work, and neither will the labelings from the set 〈0101〉.
The remaining 12 labelings represented here by their cyclic classes 〈0001〉, 〈0011〉, and
〈1110〉 all satisfy the requirement we seek. Hence, any one of them when applied to H2

will produce a SAC hypercube of dimension 2, and thus also represent a SAC 2-variable
Boolean function. �

Remark 4.6. Using the labeling y = 0011 produces the SAC hypercube H2 and associated
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Boolean function depicted in Example 4.4.

As previously suggested, we can use two appropriately chosen 2-dimensional SAC hyper-
cubes to construct a 3-dimensional SAC hypercube. In order to ease the selection task we
demonstrate a quick verification procedure which takes advantage of our consistent labeling
scheme. Let y1 and y2 be two of the 12 SAC labeling schemes for H2. In order to determine
whether or not they, once connected, will produce a 3-dimensional SAC hypercube, we eval-
uate the two vectors using the following label comparator function, f (y1,y2) =wt(y1⊕y2).
The function compares label values at corresponding indices using XOR. Hence similar
values fail to contribute anything to the Hamming weight of the resultant vector whereas
dissimilar label values add 1. Consequently, if in our case f (y1,y2) = 2 (namely half of
the vertices), then given the fact that each of the original H2 hypercubes were at the onset
SAC, one can be assured that the sum of the edge-set labels for the resultant 3-dimensional
hypercube H3 will achieve the requisite 2n−2n value and thus satisfy the strict avalanche
criterion.

Theorem 4.7. There are a total of 56 labeled SAC 3-dimensional hypercubes with SAC

labeled H2 subgraphs.

Proof. According to Theorem 4.5, there are 12 2-dimensional SAC labeled hypercubes.
Each of these has two edges labeled with 1’s (and 2 with 0’s). Moreover, we know that
in order for the labeled H3 hypercube to be SAC, 6 of its 12 edges must also be labeled
with 1’s. Therefore when connecting the two H2 hypercubes, we must ensure that 2 of their
4 corresponding vertices agree with respect to their output labels. Using the previously
described comparator function, f (y1,y2) = wt(y1⊕ y2), we could of course exhaustively
evaluate the relatively small set of label vectors to obtain the stated result. However, we
choose instead to arrive at the answer using a counting argument. We evaluate in turn
each of the three cyclic classes, 〈0001〉, 〈0011〉 and 〈1110〉. Beginning with 〈0001〉 we
consider the possible vector pairings which, when added modulo 2, will produce a vector
of weight 2. Let y = 0001. Since y is of Hamming weight 1, wt(y⊕ ρκ(y)) = 2 for
κ = 1 to 3. There are 4 vectors in 〈0001〉 for which this works, so there are 4 · 3 = 12
such possible pairings. Adding a Hamming-weight-2 vector to a Hamming-weight-1 vector
always produces a vector of Hamming weight 1 or 3, so we may readily disregard this

71



possibility. Let z = 1110. Then wt(y⊕ρκ(z)) = 2, for κ = 1 to 3. As before, there are 4
vectors in 〈0001〉 for which this works, so there 4 ·3 = 12 such possible pairings. Observe
that ȳ = 1110, so the analysis is identical for this cyclic class. Finally we consider 〈0011〉.
Adding two Hamming weight 2 vectors together produces either a Hamming weight 0, 2
or 4 vector. The first and last stated possibilities can each only happen once, so among the
4 possible shifts of 0011, it must be the case that the middle condition occurs twice. Thus
there are 4 · 2 = 8 such possible pairings. Having exhausted all possibilities within the 3
cyclic classes, we tally the possible pairings which yields 2(12+12)+8 = 56. �

Remark 4.8. The discourse above highlights a useful SAC H3 construction strategy. Select
a vector, y, from any of the three cyclic classes 〈0001〉, 〈0011〉 or 〈1110〉. If wt(y) = 1
or wt(y) = 3, then y along with a cyclic shift, ρκ(y), for κ = 1 to 3, will always ensure
wt(y⊕ρκ(y)) = 2. If wt(y) = 2, then any odd shift (κ = 1 or κ = 3) will result in wt(y⊕
ρκ(y)) = 2.

Example 4.9. Suppose we wish to construct a Boolean function f ∈B3 which satisfies
the strict avalanche criterion. We begin by first selecting two H2 labelings y = 0011 and
z = 1001. Before proceeding, we confirm that ∑

n
i=0 yi ·yi+1 = 2 and ∑

n
i=0 zi · zi+1 = 2. Once

complete, we then verify that, once connected, the two y and z labeled H2 hypercubes will
produce a SAC H3 labeled hypercube. Given the fact that

f (y,z) = wt(0011⊕1001) = wt(1010) = 2,

we can be assured that this will indeed be the case. We thus proceed to construct the 3-
dimensional hypercube H3 in the standard manner. Doing so, the vertex labels for each H2

component are augmented with a 0 or 1 in the previously described manner, however, the
associated vertex output values for each copy of H2 remains unchanged. Doing so produces
the following graph and associated function truth table:
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SAC H3 :

010,1 000,0

001,0011,1

110,1 100,1

101,0111,0

1

0

1

0

0 0

1

1

0

0

1

1

V3 f
000 0

001 0

010 1

011 1

100 1

101 0

110 1

111 0

Having demonstrated the construction technique, we codify this SAC Boolean function
construction in the following algorithm:

Algorithm 6 SAC Boolean function construction
1: Given two SAC Hn−1 binary output labeling vectors y and z, store them as arrays Y and Z.
2: m← n−1
3: Y Length← 2m

4: Edge← 0
5: Initialize two arrays W and F of length 2Y Length.
6: for i = 0 to Y Length−1 do
7: if Y [i] == Z[i] then
8: Edge++

9: end if
10: end for
11: if Edge = 2m−1 then
12: for i = 1 to Y Length do
13: if i≡ 3 (mod 4) then
14: W [i−1]← Y [i]
15: W [i]← Y [i−1]
16: W [Y Length+ i−1]← Z[i]
17: W [Y Length+ i]← Z[i−1]
18: else
19: W [i−1]← Y [i−1]
20: W [Y Length+ i−1]← Z[i−1]
21: end if
22: end for
23: else
24: Return: "Error! The vectors will not produce a SAC function."
25: end if
26: for j = 0 to 2Y Length−1 do
27: F [ j]← ( j2,W [ j])
28: end for
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Proof of Correctness of the SAC Boolean Function Construction:
The algorithm accepts two binary output labeling vectors x and y for two hypercubes of
dimension m = n− 1, storing them in the arrays Y and Z. Since each of these labelings
produces a SAC labeled hypercube, we know that each of these hypercubes must contain
2n−3(n− 1) 1-labeled edges. There will be a total of 2n−1 new edges formed once the
two hypercubes are connected. Therefore, if half of the corresponding labeled vertices
in each hypercube agree with respect to their output values (labels), then 2n−2 new edges
will be labeled with 1′s. The total number of 1-labeled edges in the resultant n-dimension
hypercube will therefore be

2 ·2n−3(n−1)+2n−2 = 2n−2(n−1+1) = 2n−2n =
2n−1n

2
.

This is exactly half of the total number of edges of the newly-formed hypercube. We there-
fore conclude that it, along with its corresponding function f ∈Bn, must be SAC. Thus,
the task at hand is to ensure that exactly half of the corresponding vertex labels in Y and Z

agree. This check is carried out in steps 6 to 10 of the algorithm. For i = 0 to Y Length−1
the algorithm compares array elements Y [i] and Z[i] and increments the Edge counter if the
values match. If Edge = 2m−1, the construction will succeed and the algorithm proceeds
to build the function truth table. The adopted labeling schemes, discussed in Theorem 4.5,
stores the vector labels in Y and Z as counterclockwise 4-cycles of H2 planes, so before
doing so, it is necessary to store the output values (labels) in lexicographic order in an ar-
ray W . This procedure is accomplished in steps 12 to 22 of the algorithm. Finally, using
W , and for j = 0 to 2n− 1, the algorithm populates the truth table array F with tuples,
( j2,W [ j]), of binary input vectors and q-ary output values.

Remark 4.10. The similarity between the Siegenthaler correlation immunity construction
outlined in Theorem 3.35 and the SAC hypercube construction from Algorithm 6 should
not be lost on the reader. The SAC construction not only uses two graphs (functions) of
dimension n−1 to create a graph (function) of dimension n, but like Siegenthaler’s it also
requires that the frequency of the two output values 0 and 1 agree between the dimension
n−1 subgraphs.

Example 4.11. Suppose we wish to construct a SAC and CI(1) Boolean function f ∈B3.
We begin by selecting two H2 labeling vectors y = 0001 and z = 0100.
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Nota bene: The reader is cautioned that, unlike in the case of lexicographic ordering, our
labeling scheme reverses the order of 10 and 11. Therefore, although by inspection y‖z
does not (based on symmetry) immediately appear to be CI(1), it in fact is.

As in the previous example, we confirm that ∑
n
i=0 yi ·yi+1 and ∑

n
i=0 zi · zi+1 both equal 2 and

that f (y,z) = wt(0001⊕0100) = wt(0101) = 2. Having done so, we then construct the H3

labeled graph below.

SAC & CI(1) H3,1 :

010,1 000,0

001,0011,0

110,0 100,0

101,1111,0

0

0

1

1

1 0

0

1

1

1

0

0

V3 f
000 0

001 0

010 1

011 0

100 0

101 1

110 0

111 0

Since our construction used y and z, which when taken in concert was CI(1), we were
not only able to construct a SAC labeled hypercube, but it also turned out to be (order 1)
correlation immune. Had we instead chosen the vectors u = 0010 and v = 1000, we would
have produced the following SAC and CI(1) hypercube.

SAC & CI(1) H3,2 :

010,0 000,0

001,0011,1

110,0 100,1

101,0111,0

0

1

1

0

1 0

1

0

0

0

1

1

V3 f
000 0

001 0

010 0

011 1

100 1

101 0

110 0

111 0

Having these two SAC and CI(1) labeled H3 graphs at our disposal, we demonstrate how
to go about combining the Siegenthaler construction of Theorem 3.35 and Algorithm 6 to
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produce a Boolean function in 4 variables which is both SAC and CI(1).

Let f1 and f2 be the Boolean functions corresponding to H3,1 and H3,2. Let n = 3 and
w = y‖z and t = u‖v. Before merging the two graphs and creating the function in n+ 1
variables, f = f1‖ f2, we ensure the following hold:

1. H3,1 and H3,2 are both of proper dimension and SAC.
2. wt(w⊕ t) = 2n−1.
3. For the set of input vectors x ∈ V3, Pr( f1(x) = 0) = Pr( f2(x) = 0).
4. f1 and f2 are both CI(1).

With all of these requirements met, we proceed with the construction and create the fol-
lowing labeled hypercube H4 along with its associated Boolean function truth table:

SAC & CI(1) H4 :

0010,1 0000,0

0001,00011,0

0110,0 0100,0

0101,10111,0

1010,0 1000,0

1001,01011,1

1110,0 1100,1

1101,01111,0

0

0

1

1

1 0

0

1

1

1

0

0

0

1

1

0

1 0

1

0

0

0

1

1

1

1
0

1
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Table 4.1: A SAC and CI(1) Boolean function f ∈B4

V4 f

0000 0

0001 0

0010 1

0011 0

0100 0

0101 1

0110 0

0111 0

1000 0

1001 0

1010 0

1011 1

1100 1

1101 0

1110 0

1111 0

4.3 A Probabilistic Strict Avalanche Criterion
Motivated by the work of Kam and Davika on permutation-substitution networks [22],
as well as that of Feistel [14], Webster and Tavares first investigated the strict avalanche
criterion in 1986 in an effort to design S-boxes with desirable cryptographic properties.
Given the fact that Boolean functions are often employed as components in S-box design,
there has subsequently been a great deal of research carried out on SAC Boolean functions.
In this section, we will seek to extend the notion of the strict avalanche criterion to that of
generalized Boolean functions. Throughout the discourse we continue to build upon the
graph-theoretic framework previously developed for the Boolean case.

The strict avalanche criterion requires, in the Boolean case, that each output bit should
change with probability 1/2 whenever a single bit of a binary input vectors is comple-

77



mented [50]. In the generalized Boolean case, we modify the criterion as follows:

Definition 4.12. A generalized Boolean function f ∈ G Bq
n is said to satisfy the probabilis-

tic strict avalanche criterion (PSAC), if changing any one of the n bits in an input vector
x ∈ Vn results in the output of the function remaining invariant with probability 1/q.

Remark 4.13. As previously demonstrated, for each Boolean function, it is possible to
construct a corresponding labeled hypercube Hn. Consequently, given Definition 4.12, a
generalized Boolean function f ∈ G Bq

n can only be PSAC if q|2n−1n. In other words, the
number of edges in the graph Hn must be divisible by q.

Example 4.14. We motivate this probabilistic notion of SAC using the following example.
Suppose we wish to construct a PSAC generalized Boolean function f ∈ G B3

3. The first
task is to verify that the number of edges in H3, namely 23−13 = 12, is divisible by 3.
This being the case, we proceed. As with the previous SAC Boolean function construction,
we base our construction on two, albeit not necessarily PSAC hypercubes, of dimension
n− 1. The function’s output values are now in Z3. Suppose the two ternary label vectors
are y = 0011 and z = 2200. In the case of binary vectors, we had a straightforward method
of checking the suitability of a given label vector using the sum of the binary product of its
bits. In the generalized Boolean function case, we utilize the same basic idea. However,
due to the q-ary nature of the task at hand, we employ the Kronecker delta function instead.
Thus, given a vector y = (y1,y2, . . . ,yn), let

δ (yi,yi+1) =

0 if yi 6= yi+1,

1 if yi = yi+1

and

yi+1 =

yi+1 if i+1≤ n,

yi+1−n if i+1 > n.

Having previously been given the label vectors y and z, we are now capable of computing
the number of 1-labeled edges in each of the respective H2 graphs, id est

n

∑
i=0

δ (yi,yi+1) = 2 and
n

∑
i=0

δ (zi,zi+1) = 2.
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We subsequently need to check the number of newly formed edges which will be 1-labeled
when the two H2 graphs are connected. Once again, we need to revise the way in which this
is accomplished. Rather than using the XOR operation and computing wt(y⊕z), as we did
when dealing with Boolean functions, we again avail ourselves of the Kronecker delta and
compute instead the sum, ∑

n
i=1 δ (yi,zi). Doing so, we discover that connecting the two H2

graphs will not produce any additional 1-labeled edges. Thus, the total number of 1-labeled
edges in H3 will be 4. This in turn means that the probability of an edge being 1-labeled,
and thus neighbor vertices within H3 having the same output label, is 4/12 = 1/3. The
H2 labeled subgraphs will therefore produce the desired result. We display the following
PSAC labeled hypercube H3 along with its associated function truth table.

PSAC H3 :

010,1 000,0

001,0011,1

110,0 100,2

101,2111,0

1

0

1

0

1 1

0

0

0

0

0

0

V3 f
000 0

001 0

010 1

011 1

100 2

101 2

110 0

111 0

Having demonstrated our approach to constructing PSAC generalized Boolean functions,
we now codify the procedure in Algorithm 7.

Remark 4.15. Despite being rather long, Algorithm 7 is, at its core, relatively straightfor-
ward. The general approach mirrors that of Example 4.13 and involves using the supplied
label vectors to count the number of 1-labeled edges within each subgraph (hypercube of
dimension n− 1) along with the number of 1-labeled edges which emerge once the two
subgraphs are connected. If this number ends up equaling (2n−1n)/q, q being the number
of different output values (labels) of the generalized function f ∈ G Bq

n, then we know that
according to Definition 4.12, f will satisfy the probabilistic strict avalanche criterion.
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Algorithm 7 PSAC generalized Boolean function construction
1: m← n−1
2: if 2m(m+1) 6≡ 0 (mod q) then
3: Print: "Error! Function parameters not capable of producing a PSAC function."
4: else
5: Store two Hn−1 labeling vectors,y and z as arrays Y and Z.
6: Y Length← 2m

7: Initialize arrays W and F of length 2Y Length.
8: 4Sections← Y length/4
9: Y Edge← 0

10: ZEdge← 0
11: TargetCnt← (2m+1(m+1))/q
12: for k = 0 to 4Sections−1 do
13: for j = 4k to 4(k+1)−1 do
14: EndIndex = j+1
15: if EndIndex≥ 4 then
16: EndIndex = EndIndex−4
17: end if
18: if Y [ j] == Y [endIndex] then
19: Y Edge++
20: end if
21: if Z[ j] == Z[endIndex] then
22: ZEdge++
23: end if
24: end for
25: end for
26: for h = 0 to m−1 do
27: Stepsize← 2h+2

28: End← Y Length
2Stepsize −1

29: for k = 0 to End do
30: for j = (2k)Stepsize to (2k+1)Stepsize−1 do
31: if Y [ j] == Y [ j+Stepsize] then
32: Y Edge++
33: end if
34: if Z[ j] == Z[ j+Stepsize] then
35: ZEdge++
36: end if
37: end for
38: end for
39: end for
40: EdgeCnt = Y Edge+ZEdge
41: ConnectTarget = TargetCnt−EdgeCnt
42: if EdgeCnt > TargetCnt or ConnectTarget > 2m then
43: Print: "Error: y and z cannot produce a PSAC function."
44: else
45: for i = 0 to 2m−1 do
46: if Y [i] == Z[i] then
47: EdgeCnt ++
48: end if
49: end for
50: end if
51: if EdgeCnt! == TargetCnt then
52: Print: "Error: y and z cannot produce a PSAC function."
53: end if
54: for i = 1 to Y Length do
55: if i≡ 3 (mod 4) then
56: W [i−1]← Y [i]
57: W [i]← Y [i−1]
58: W [Y Length+ i−1]← Z[i]
59: W [Y Length+ i]← Z[i−1]
60: else
61: W [i−1]← Y [i−1]
62: W [Y Length+ i−1]← Z[i−1]
63: end if
64: end for
65: for j = 0 to 2Y Length−1 do
66: F [ j]← ( j2,W [ j])
67: end for
68: Print: F
69: end if



Proof of Correctness of the PSAC Generalized Boolean Function Construction:
The first thing the algorithm does, in step 2, is to verify that the number of edges, 2n−1n, of
the resultant graph is divisible by the number of desired number output values (labels), q.
If this is satisfied, the algorithm then accepts two label vectors y and z, each of length 2n−1,
for the two Hn−1 subgraphs and stores them in arrays Y and Z. Following some required
initialization, the algorithm uses Y and Z and begins to compute the number of 1-labeled
edges within each labeled H2 subgraph. Our adopted labeling schemes, discussed in The-
orem 4.5, stores vectors labels as counterclockwise 4-cycles. Consequently, in order to
begin comparing label values and count corresponding 1-labeled edges within each vector,
we must first split the vectors into sub-vectors of length 4 and cyclically check for value
agreements. This procedure is carried out in steps 12 to 25 of the algorithm. Once this
has been completed the algorithm then needs to check output value agreement for corre-
sponding vertices residing in different planes of each Hn−1 subgraph. This procedure is
accomplished in steps 26 to 39. Upon completion of these steps, the algorithm now has
1-labeled edge counts for both Y and Z which are added together and stored as EdgeCnt.
EdgeCnt is then subtracted from TargetCnt (the number of 1-labeled edges required in
order for Hn to be PSAC). This value is stored as ConnectTarget. The algorithm then per-
forms two checks: First, it ensures that EdgeCnt ≤ TargetCnt. Secondly, it verifies that
ConnectTarget < 2m, where 2m is the number of new edges formed once the two n− 1
dimension hypercubes are connected. If either of these conditions fail, then Hn cannot be
PSAC and no further computation is needed. If, on the other hand, these conditions are sat-
isfied, the algorithm compares the elements of Y [i] and Z[i] and increments EdgeCnt each
time an agreement is encountered. Thus once complete, the algorithm will have a complete
tally of the number of 1-labeled edges in the Hn hypercube. By comparing EdgeCnt with
TargetCnt a final determination can then be made as to whether or not the construction will
produce a PSAC hypercube of dimension n. If the two values prove to be equal, steps 54 to
64 of the algorithm then store, in lexicographic order, the output values of Y and Z in the
array W . Using W , and for j = 0 to 2n−1, the algorithm finally populates the array F with
tuples, ( j2,W [ j]), of binary input vectors and q-ary output values.

Example 4.16. Suppose we wish to construct a generalized Boolean function f ∈ G B4
4

which satisfies the probabilistic strict avalanche criterion. The number of edges in H4,
namely 24−14 = 32, is divisible by the desired number of output values which is 4, so the
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algorithm proceeds to accept and store two label vectors for dimension 3 hypercubes from
which the graph will be constructed. Suppose the label vectors are: y = 00120223 and
z = 20013022. Y and Z are length 8 vectors, so they will each contain two 4-cycles. The
algorithm checks for label value agreements within each 4-cycle of the respective vectors,
saving the number of agreements to Y Edge and ZEdge. In this example these both happen
to be 2. The algorithm then checks for agreements between labels of corresponding vectors
in different planes of each labeled H3 graph. Adding these agreements to the respective
counters, the tally then stands at Y Edge = 3 and ZEdge = 3. The algorithm then computes
EdgeCnt = Y Edge+ ZEdge and ConnectTarget = TragetCnt −EdgeCnt. Having done
so, it verifies that EdgeCnt ≤ TargetCnt and ConnectTarget ≤ 2n−1, where TragetCnt is
the requisite number of 1-labeled edges in a PSAC quaternary vertex labeled H4 hyper-
cube. If either of these conditions were to fail, the algorithm would terminate. In this
example however, both checks pass, so the algorithm proceeds and for i = 1 to 8 compares
array elements Y [i] and Z[i], incrementing EdgeCnt each time an agreement is encountered,
thus yielding EdgeCnt = 8. The algorithm now compares EdgeCnt to TargetCnt. Since
TargetCnt = 32/4 = 8, Y and Z, do indeed create a PSAC generalized Boolean function.
Using the array W , the algorithm then saves the output labels of Y and Z in lexicographic
order and subsequently builds the truth table F of the function. The labeled hypercube
along with its corresponding function truth table, Table 4.2, follow.

PSAC H4 :

0010,2 0000,0

0001,00011,1

0110,3 0100,0

0101,20111,2

1010,1 1000,2

1001,01011,0

1110,2 1100,3

1101,01111,2

0

0

1

0

0 0

1

0

0

1

0

0

0

0

0

1

1 0

0

0

0

0

1

0

0

1
0

0
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Table 4.2: A PSAC generalized Boolean function f ∈ G B4
4

V4 f

0000 0

0001 0

0010 2

0011 1

0100 0

0101 2

0110 3

0111 2

1000 2

1001 0

1010 1

1011 0

1100 3

1101 0

1110 2

1111 2

Theorem 4.17. A generalized Boolean function f ∈ G Bq
n can only satisfy the probabilistic

strict avalanche criterion if q|2n−1n.

Proof. Let f ∈ G Bq
n be a PSAC generalized Boolean function. Let Hn = (Vn,E) be the

labeled hypercube corresponding to f , where Vn and E are the respective vertex and edge
sets of Hn. Let each vertex x ∈ Vn be labeled with an output from Zq and let λ (x) be the
function which returns the label for x. Moreover, let each edge ε = {x,y} ∈ E, x,y ∈ Vn,
be labeled with a value v ∈ F2, such that v = δ (λ (x),λ (y)), where δ is the Kronecker
delta function. By Definition 4.12, in order for f to be PSAC, it must remain invariant with
probability 1/q for the set of 2n−1 possible input vectors. There are a total of 2n−1n edges
in Hn. Consequently, if f is PSAC, it means that (2n−1n)/q of the edges of Hn must be
labeled with 1′s. This in turn can only occur if q|2n−1n. �
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4.4 Global and Uniform Avalanche Criteria
From a probabilistic frame of reference several types of strict avalanche criteria exist. To
illustrate the concept, consider the following labeled H3 hypercube which represents a SAC

Boolean functions f ∈B3:

SAC H3 :

010,0 000,0

001,1011,1

110,1 100,0

101,1111,1

For each vertex in the graph, we compare its label to the set of labels of its neighbor vertices.
For the benefit of the reader, we split H3 into subgraphs and omit vertex labels other than
the one under consideration.

010,0 0

1

1

000,0

1

0

0

011,1

0

1

1

001,11

1

0

110,1

1

0

0
100,0

1

1

0

111,1

1

1

1

101,1
1

0

1

For each vertex we now compute the probability associated with the label remaining in-
variant as we move from the vertex to its neighbors. The results of these calculations have
been compiled in Table 4.3.
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Table 4.3: Vertex invariance probability for a SAC Boolean function

Vertex Prob. Invariance Prob.Change

000 2/3 1/3

001 2/3 1/3

010 1/3 2/3

011 2/3 1/3

100 1/3 2/3

101 2/3 1/3

110 1/3 2/3

111 1 0

The hypercube is of dimension 3, and each vertex is thus of degree 3. This in turn means
that it is impossible to achieve locally balanced invariance and change probabilities at the
vertex level. However, summing the respective columns of the table one observes that
across the set of all vertices, the probability of invariance exceeds that of the probability of
change. From a cryptographic perspective this is an undesirable property! Consider instead
the following labeled H3 hypercube which also represents a SAC Boolean function f ∈B3:

GAC H3 :

010,1 000,0

001,0011,1

110,0 100,0

101,1111,1

To aid the reader we again split H3 into subgraphs:
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010,1 0

0

1

000,0

0

0

1

011,1

1

0

1

001,01

1

0

110,0

1

1

0
100,0

0

1

0

111,1

0

1

1

101,1
1

0

0

As before we calculate the probability of invariance for each vertex of the graph and display
the results in Table 4.4.

Table 4.4: Vertex invariance probability for a globally SAC Boolean function

Vertex Prob. Invariance Prob.Change

000 2/3 1/3

001 1/3 2/3

010 1/3 2/3

011 2/3 1/3

100 2/3 1/3

101 1/3 2/3

110 1/3 2/3

111 2/3 1/3

Inspecting the results in the Table 4.4, we see that for this SAC hypercube and its associated
function the probabilities of invariance and change are balanced across the set of input
vectors.

Definition 4.18. A generalized Boolean function f ∈ G Bq
n is said to satisfy the global

avalanche criterion (GAC), if it satisfies the probabilistic strict avalanche criterion of Defi-
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nition 4.12 and,

∑
x∈Vn

n

∑
i=1

Pr( f (x⊕ ei) = f (x)) = 2n/q,

where ei is a unit vector with the ith bit equal to 1 and all other bits 0.

Definition 4.19. A generalized Boolean function f ∈ G Bq
n is said to satisfy the uniform

avalanche criterion (UAC), if for all 1≤ i≤ n, 1≤ j ≤ q, and x ∈ Vn,

Pr( f (x⊕ ei) = c j) =
1
q
,

where c j are distinct elements of Zq and ei are unit vectors with the ith bit equal to 1 and
all other bits 0.

Example 4.20. To further motivate the concept of the uniform avalanche criterion, we
display the following quaternary output labeled H4, which represents a UAC generalized
Boolean function f ∈ G B4

4. For lucidity’s sake, we again omit the edge labels.

UAC H4 :

0010,1 0000,0

0001,20011,3

0110,2 0100,3

0101,10111,0

1010,1 1000,0

1001,21011,3

1110,2 1100,3

1101,11111,0

To help the reader verify that for each vertex in the graph, the set of its neighbors take on
all possible output values (labels) from Z4 (with equal frequency), we split the graph into
16 subgraphs, one for each of the 16 vertices in H4.
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0010,1 0

2

3

1

0000,0

2

3

1

0

0011,3

1

2

0

3

0001,23

1

0

2

0110,2

0

1

3

2

0100,3
2

1

0

3

0111,0

2

1

3 0

0101,1
0

3

2 1

1010,1 0

2

3

1

1000,0

2

3

1

0

1011,3

1

2

0

3

1001,23

1

0

2

1110,2

0

1

3

2

1100,32

1

03

1111,0

2

1

3

0

1101,10

3

2

1

The graph paradigm under which we have been operating makes it easy (at least for small
examples) to verify that a function satisfies the various avalanche criteria. However, other
points of reference also have utility. Consider Table 4.5 which depicts the UAC function
from Example 4.20.
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Table 4.5: A UAC generalized Boolean function f ∈ G B4
4

V4 f

0000 0

0001 2

0010 1

0011 3

0100 3

0101 1

0110 2

0111 0

1000 0

1001 2

1010 1

1011 3

1100 3

1101 1

1110 2

1111 0

From the symmetry exhibited in the first and second half of the truth table, it is apparent
that f also is a concatenation of two correlation immune (order 1) generalized Boolean
functions (Siegenthaler construction). The fact that this UAC function is 1-resilient (CI(1)
and balanced) is not a coincidence! Generalized Boolean functions which satisfy the uni-
form avalanche criterion exhibit amazing properties. We will continue to explore these
properties throughout the remainder of this chapter.

Theorem 4.21. If a generalized Boolean function in G Bq
n satisfies the uniform avalanche

criterion, then q = 2`, where `≤ n−1 if n odd, or `≤ n, if n even.

Proof. Let f ∈ G Bq
n be a UAC generalized Boolean function. Let Hn = (Vn,E) be the

labeled hypercube corresponding to f , where Vn and E are the respective vertex and edge
sets of Hn. Let each vertex x ∈ Vn be labeled with an output from Zq. Additionally let
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ei ∈Vn be unit vectors with the ith bit equal to 1 and all other bits 0. By Definition 4.19, in
order for f to be UAC, for all i = 1 to n, j = 1 to q, and x ∈ Vn, Pr( f (x⊕ ei = c j) = 1/q.
Consequently, not only must the number of edges in the graph, namely 2n−1n, be divisible
by q, but the number of graph vertices must also be divisible by q. A hypercube Hn contains
2n vertices. Hence, the stipulated requirement has been proven. �

4.5 Necessary and Sufficient Conditions for a Generalized
Strict Avalanche Criterion

Suppose that we wish to employ two generalized Boolean function f1 ∈ G Bq1
n and f2 ∈

G Bq2
n as S-box components of a cryptographic system, as depicted in Figure 4.5. Let

S be the q1× q2 S-box (two dimensional array) containing q1 rows and q2 columns of
binary vector elements of length n. Let x,y ∈ Vn and given x, let f1(x) and f2(x) be the
respective row and column pointers into S, such that f1(x) ∈ Zq1 and f2(x) ∈ Zq2 and
g(x) = S[ f1(x)][ f2(x)] = y, is the function which returns element y located in row f1(x)
and column f2(x) of the S-box.

f1(x)

f2(x)

y
S

Figure 4.1: S-box using generalized Boolean function pointers

Momentarily considering the q-ary nature of the S-box pointers, one realizes, that in order
for the S-box in question to exhibit good cryptographic properties, it is imperative that in
addition to f1 and f2 being PSAC, each of their constituent Boolean functions must also
be SAC. Regrettably, unlike the situation encountered for correlation immunity, the fact
that a generalized Boolean function is PSAC does not guarantee that its Boolean function
components will also be SAC.

Example 4.22. To see that this is the case, consider the following generalized Boolean
function f ∈ G B3

3 along with its constituent Boolean functions, a0 and a1.
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f :

010,0 000,0

001,1011,2

110,1 100,0

101,0111,2

0

1

0

0

0 1

0

0

1

1

0

0

V3 ao a1 f

000 0 0 0

001 1 0 1

010 0 0 0

011 0 1 2

100 0 0 0

101 0 0 0

110 1 0 1

111 0 1 2

ao :

010,0 000,0

001,1011,0

110,1 100,0

101,0111,0

1

1

0

0

0 1

1

0

1

1

0

0

V3 ao

000 0

001 1

010 0

011 0

100 0

101 0

110 1

111 0

a1 :

010,0 000,0

001,0011,1

110,0 100,0

101,0111,1

0

1

1

0

0 1

0

1

1

1

1

1

V3 a1

000 0

001 0

010 0

011 1

100 0

101 0

110 0

111 1

By inspection we see that 4 of the 12 edges of f ’s graph are labeled with 1’s. The proba-
bility that two of neighboring vertices agree with respect to their output values (labels) is
therefore 1/3, so f is PSAC. Likewise, 6 of a0’s 12 edges are labeled with 1’s, so it is SAC.
However, in the case of a1, 8 of its 12 edges are labeled with 1’s and it therefore fails to
satisfy the SAC.

Proceeding in the opposite direction and building a generalized Boolean function using
SAC Boolean functions also does not guarantee that the generalized Boolean function will
be PSAC. We again provide the reader with an example:

Example 4.23. Start with the following graphs:
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ao :

010,0 000,0

001,1011,0

110,1 100,0

101,0111,0

1

1

0

0

0 1

1

0

1

1

0

0

V3 ao

000 0

001 1

010 0

011 0

100 0

101 0

110 1

111 0

a1 :

010,1 000,0

001,0011,0

110,0 100,0

101,0111,1

0

0

1

1

0 1

0

1

0

1

1

0

V3 a1

000 0

001 0

010 1

011 0

100 0

101 0

110 0

111 1

Of the 12 edges in each of the labeled graphs a0 and a1, 6 edges are 1-labeled, hence the
Boolean functions which they represent are both SAC. We now utilize these functions to
produce the following generalized Boolean function f (x) = a0(x)+2a1(x).

f :

010,2 000,0

001,1011,0

110,1 100,0

101,0111,2

0

0

0

0

0 1

0

0

0

1

0

0

V3 ao a1 f

000 0 0 0

001 1 0 1

010 0 1 2

011 0 0 0

100 0 0 0

101 0 0 0

110 1 0 1

111 0 1 2

The graph f contains 2 1-labeled edges, which means that the probability of two neighbor
vertices in the graph having the same output label is 2/12 = 1/6. Given the fact that q = 3,
we conclude that f does not satisfy the PSAC.

Both of these situations are unfortunate! Webster and Tavares’ notion of a strict avalanche
criterion was born out of a desire to build S-boxes with good cryptographic properties. If
we hope to employ generalized Boolean functions as components of cryptographic algo-
rithms (quantum, perhaps) we must at minimum avoid introducing binary decomposition
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design weaknesses and thus must ensure that the constituent Boolean functions of a PSAC

generalized Boolean function are all SAC. From a practical perspective we would also
like to be able to build PSAC generalized Boolean functions using SAC Boolean function.
Bearing both conditions in mind, we formulate the following definition.

Definition 4.24. Let f ∈ G Bq
n be a generalized Boolean function, such that for x ∈ Vn,

f (x) = ∑
k−1
j=0 2 ja j(x), a j ∈ Bn. The function f is said to satisfy the generalized strict

avalanche criterion (GSAC) if and only if f satisfies the probabilistic strict avalanche cri-
terion and all Boolean functions a j, 0≤ j ≤ k−1, satisfy the strict avalanche criterion.

Lemma 4.25. Let f ∈ G Bq
n be a generalized Boolean function, such that x ∈ Vn and

f (x) =
k−1

∑
j=0

2 ja j(x), where a j ∈Bn. If f satisfies the uniform avalanche criterion, then for

all j, 0≤ j ≤ k−1, a j satisfies the strict avalanche criterion.

Proof. Let f ∈ G Bq
n be a UAC generalized Boolean function. Let Hn = (Vn,E) be the

labeled hypercube corresponding to f , where Vn and E are the respective vertex and edge
sets of Hn. Let each vertex x ∈ Vn be labeled with an output cm ∈ Zq and let ei ∈ Vn be a
unit vector with the ith bit equal to 1 and all other bits 0. By Definition 4.19, in order for f

to be UAC, for all i = 1 to n, all m = 1 to q, and every x ∈ Vn, Pr( f (x⊕ ei) = cm) = 1/q.
Since Hn is a hypercube, each vertex is of degree n = hq, for some h, 1≤ h≤ n. Moreover,
from Theorem 4.21, we know that q = 2` for ` ≤ n. For each value j, j = 0 to k− 1, and
each vertex x, we relabel Hn by replacing the output value (label) cm with the jth bit of the
binary expansion of cm, thus creating a new labeled hypercube for each Boolean function
a j. Consider further the binary expansion of the set of q distinct output values cm ∈ Zq.
Observe that since q = 2`, for each j this set will contain an equal number of 0’s and 1’s.
If this is not immediately evident, consider the fact that each column j of V` is balanced.
Since f is UAC, for each vertex x in Hn, each value q appears with frequency h in the
set of neighbor vertices of x. Therefore, regardless of what value h happens to be for our
particular generalized Boolean function f , for each Boolean function, a j, each vertex x in
a j will have 2`−1 neighbor vertices with 0 labels and 2`−1 neighbor vertices with 1 labels.
Hence a j satisfies the uniform avalanche criterion and thus is also SAC. �

Lemma 4.26. Let B= {a0,a1, · · · ,ak−1} be a set of k Boolean functions each in n variables.

If each Boolean function satisfies the uniform avalanche criterion (UAC) and for all j and
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h, where 0 ≤ j,h,≤ k− 1 and j 6= h, the pairwise Hamming distance d(a j,ah) = 2n−1,

then the generalized Boolean function f ∈ G Bq
n, constructed using B such that f (x) =

∑
k−1
j=0 2 ja j(x), will be such that it also satisfies the uniform avalanche criterion.

Proof. Let B = {a0,a1, · · · ,ak−1} be a set of k UAC Boolean functions each in n variables.
For all j and h, where 0 ≤ j,h,≤ k− 1 and j 6= h, let each function be such that their
pairwise Hamming distances satisfy d(a j,ah) = 2n−1. Let f ∈ G Bq

n be the generalized
Boolean function constructed using B such that f (x) = ∑

k−1
j=0 2 ja j(x). For i = 1 to n, let,

Vx = {x⊕ ei : x ∈ Vn}, be the set of vectors of Hamming distance 1 from x, and denote
Cx = f (Vx) as the set of output values associated with Vx. Consider now the q distinct
output values cm ∈ Zq, m = 1 to q. Indexing from j = 0 to k−1, let (cm)2( j) represent the
jth bit of the binary expansion of cm. Each Boolean function is UAC, therefore for all i = 1
to n, all m = 1 to q, every position j, and all fixed x′s, Pr

(
a j(x⊕ei) = (cm)2( j)

)
= 1/2. In

other words, the number of 0′s and 1′s are equal for each index j, of the set of vectors Cx.
Moreover, since the pairwise Hamming distance between all distinct Boolean functions is
2n−1, it means that the q output values of Cx will all be distinct elements of Vk. Thus, it
must be the case that for all x ∈ Vn, Pr( f (x⊕ ei) = cm) = 1/q proving that f is UAC. �

Theorem 4.27. A generalized Boolean function f ∈ G Bq
n, f (x) = ∑

k−1
j=0 2 ja j(x), where

x∈Vn and a j ∈Bn, is GSAC if f and all functions a j are UAC and for all 0≤ j,h≤ k−1,

such that j 6= h, the pairwise Hamming distance d(a j,ah) = 2n−1.

Proof. According to Definition 4.24, a generalized Boolean function f ∈ G Bq
n, where

f (x) = ∑
k−1
j=0 2 ja j(x), satisfies the generalized strict avalanche criterion if and only if f

satisfies the probabilistic strict avalanche criterion and all Boolean functions a j, j = 0 to
k−1, satisfy the strict avalanche criterion.
(⇒) Let f ∈ G Bq

n be a UAC generalized Boolean function such that x ∈ Vn, f (x) =
∑

k−1
j=0 2 ja j(x), and a j ∈ Bn. Then according to Lemma 4.25, all Boolean functions a j

are SAC.
(⇐) Let B= {a0,a1, · · · ,ak−1} be a set of k Boolean functions, each in n variables and each
of which also satisfy the uniform avalanche criterion. For all j and h, where 0≤ j,h,≤ k−1
and j 6= h, let the pairwise Hamming distance d(a j,ah) = 2n−1. Suppose f ∈ G Bq

n, is a
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generalized Boolean function constructed using B such that f (x) = ∑
k−1
j=0 2 ja j(x). Then

according to Lemma 4.26, f satisfies the uniform avalanche criterion. �

Examples of GSAC generalized Boolean functions abound. The UAC generalized Boolean
function f ∈ G B4

4 which we presented in Example 4.20 satisfied the generalized strict
avalanche criterion. Below we provide yet another example of a generalized Boolean
function f ∈ G B4

3 which satisfies the generalized strict avalanche criterion. In this case
however, the function fails to satisfy the UAC.

f :

010,2 000,0

001,0011,1

110,3 100,0

101,2111,2

0

0

1

0

0 0

1

0

0

1

0

0

V3 ao a1 f

000 0 0 0

001 0 0 0

010 0 1 2

011 1 0 1

100 0 0 0

101 0 1 2

110 1 1 3

111 0 1 2

Observe that 3 of the 12 edges in the graph f are 1-labeled. The probability that any two
neighbor vertices in the graph have the same output value (label) is therefore 1/4 and the
function is PSAC.

ao :

010,0 000,0

001,0011,1

110,1 100,0

101,0111,0

0

1

1

0

0 1

1

0

0

1

1

0

V3 ao

000 0

001 0

010 0

011 1

100 0

101 0

110 1

111 0

a1 :

010,1 000,0

001,0011,0

110,1 100,0

101,1111,1

0

0

1

1

1 0

1

0

0

1

0

1

V3 a1

000 0

001 0

010 1

011 0

100 0

101 1

110 1

111 1
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In a0 and a1, 6 of the 12 graph edges in each respective graph are 1-labeled. Thus, the
probability that any two neighbor vertices in either graph having the same output value
(label) is therefore 1/2 and both functions are therefore SAC.

4.6 The Connection between the Uniform Avalanche Cri-
terion and Correlation Immunity

In Example 4.20 we hinted that a connection existed between a function satisfying the
uniform avalanche criterion and the fact that it was correlation immune (order 1). We now
prove this result.

Theorem 4.28. Generalized Boolean functions f ∈ G Bq
n which satisfy the uniform

avalanche criterion are 1-resilient (balanced and correlation immune of order 1).

Proof. We proceed by way of contradiction. Let f ∈ G Bq
n be a generalized Boolean func-

tion which satisfies the uniform avalanche criterion. Partition the set of input vectors Vn

into q sets X j, where 0 ≤ j ≤ q− 1, such that for all x ∈ X j, f (x) = j. Without loss of
generality consider one of these sets X j, say for instance X0. Suppose that there exists at
least one index k, 1 ≤ k ≤ n for which the set of vectors X0, contain an uneven number
of 0’s and 1’s. Let ei denote a unit vector with the ith bit equal to 1 and all other bits 0.
The function f is UAC, so for the set of unit vectors, where i = 1 to n and each x ∈ X0,
the vectors, x⊕ ei, each reside in one of the q different sets X j. Therefore any imbalance
with respect to the number of 0’s and 1’s in column k for the vectors of X0 must also result
in a 0-1 imbalance in column k of the vectors contained in each of the q− 1 remaining
sets X j, where j 6= 0. Assume that there is a difference of d more 0’s than 1’s in column
k of X0. Since f is UAC, the total disparity of 0’s and 1’s for all vectors in the remaining
sets X j, 1 ≤ j ≤ q− 1 is d(n− 1). However, the union ∪q−1

j=0X j = Vn. Since the number
of 0’s and 1’s is balanced for each column i, i = 1 to n this cannot occur. We therefore
conclude that for all indices i = 1 to n and each set X j, j = 0 to q− 1, there must be an
equal number of 0’s and 1’s. This in turn means that for all j ∈ Zq and every i from 1 to n,
Pr(xi = 1| f (x) = j) = 1/2, which implies that f is CI(1). Moreover, f is UAC, so for each
x, and each cm ∈ Zq, Pr( f (x⊕ ei) = cm) = 1/q. Thus each output value cm occurs with
equal frequency across all x ∈ Vn and f is therefore balanced. �
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Remark 4.29. Theorem 4.28 is important. It not only tells us that a UAC generalized
Boolean function is also CI(1), but given Theorems 3.38 and 4.25, also says that the con-
stituent Boolean function from which f was built are all CI(1) and SAC, thus rendering
f resistant to the binary decomposition attacks, which we previously considered. No-
tice, however, that although all generalized Boolean functions which satisfy the uniform
avalanche criterion are correlation immune (order 1), not all order-1 correlation immune
generalized Boolean functions are UAC, or even PSAC, for that matter.

Example 4.30. To see that this is the case, consider the (order 1) correlation immune gener-
alized Boolean function f ∈ G B4

4 in Table 4.6 along with its associated labeled hypercube.

Table 4.6: A non−UAC CI(1) generalized Boolean function f ∈ G B4
4

V4 f

0000 0

0001 3

0010 2

0011 1

0100 1

0101 2

0110 3

0111 0

1000 1

1001 2

1010 3

1011 0

1100 0

1101 3

1110 2

1111 1
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f :

0010,2 0000,0

0001,30011,1

0110,3 0100,1

0101,20111,0

1010,3 1000,1

1001,21011,0

1110,2 1100,0

1101,31111,1

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0
0

0

Using symmetry as our aid, we clearly see that f is a CI(1) generalized Boolean function.
However, in this extreme case, none of the 32 edges in the corresponding graph are 1-
labeled. Thus f not only fails to satisfy the UAC, but also fails to be PSAC.

Using two UAC compliant generalized Boolean functions in n variables along with Al-
gorithm 7 and the Siegenthaler construction allows us to construct a generalized Boolean
functions in n+1 variables which is both PSAC and 1-resilient.

Example 4.31. Using the two UAC generalized Boolean functions in Tables 4.7 and 4.8
along with Algorithm 7 and the Siegenthaler construction we construct the PSAC and 1-
resilient function depicted in Table 4.9 and Figure 4.2.
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Table 4.7: UAC function f1 ∈ G B4
4

V4 a0 a1 a0⊕a1 f1

0000 0 0 0 0

0001 0 1 1 2

0010 1 0 1 1

0011 1 1 0 3

0100 1 1 0 3

0101 1 0 1 1

0110 0 1 1 2

0111 0 0 0 0

1000 0 0 0 0

1001 0 1 1 2

1010 1 0 1 1

1011 1 1 0 3

1100 1 1 0 3

1101 1 0 1 1

1110 0 1 1 2

1111 0 0 0 0

Table 4.8: UAC function f2 ∈ G B4
4

V4 a0 a1 a0⊕a1 f2

0000 0 0 0 0

0001 1 1 0 3

0010 0 1 1 2

0011 1 0 1 1

0100 1 0 1 1

0101 0 1 1 2

0110 1 1 0 3

0111 0 0 0 0

1000 0 0 0 0

1001 1 1 0 3

1010 0 1 1 2

1011 1 0 1 1

1100 1 0 1 1

1101 0 1 1 2

1110 1 1 0 3

1111 0 0 0 0
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Table 4.9: A PSAC and 1-resilient generalized Boolean function f1‖ f2 = f ∈ G B4
5

V4 a0 a1 a0⊕a1 f

00000 0 0 0 0

00001 0 1 1 2

00010 1 0 1 1

00011 1 1 0 3

00100 1 1 0 3

00101 1 0 1 1

00110 0 1 1 2

00111 0 0 0 0

01000 0 0 0 0

01001 0 1 1 2

01010 1 0 1 1

01011 1 1 0 3

01100 1 1 0 3

01101 1 0 1 1

01110 0 1 1 2

01111 0 0 0 0

10000 0 0 0 0

10001 1 1 0 3

10010 0 1 1 2

10011 1 0 1 1

10100 1 0 1 1

10101 0 1 1 2

10110 1 1 0 3

10111 0 0 0 0

11000 0 0 0 0

11001 1 1 0 3

11010 0 1 1 2

11011 1 0 1 1

11100 1 0 1 1

11101 0 1 1 2

11110 1 1 0 3

11111 0 0 0 0



0000→ 0

0001→ 2

0010→ 1

0011→ 3

0100→ 3

0101→ 1

0110→ 2

0111→ 0

1000→ 0

1001→ 2

1010→ 1

1011→ 3

1100→ 3

1101→ 1

1110→ 2

1111→ 0

0000→ 0

0001→ 3

0010→ 2

0011→ 1

0100→ 1

0101→ 2

0110→ 3

0111→ 0

1000→ 0

1001→ 3

1010→ 2

1011→ 1

1100→ 1

1101→ 2

1110→ 3

1111→ 0

Figure 4.2: Labeled hypercube corresponding to the generalized Boolean function in Table 4.9
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4.7 Linear Structures and the Globally Uniform Gradient
The preceding discourse on strict avalanche criteria prompted us to examine the behavior
of a generalized function, first across the entire set of input vectors, and later for each
individual input vector. By proceeding from the "global" to "local" point of view, and along
the way modifying requirements so as to ensure that output value probabilities remained
balanced, we were able to devise increasingly well-behaved functions. The pinnacle of our
analysis thus far has been the set of functions which satisfy the uniform strict avalanche
criterion. These functions are both 1-resilient and satisfy the generalized strict avalanche
criterion. However, more remains to be done.

Recall from Definition 2.16 that, given a generalized Boolean function f ∈ G Bq
n, a vector

a ∈Vn is called a linear structure if there exists c ∈ Zq such that, for all x ∈Vn, f (x⊕a)−
f (x) = c.

Consider once again the function f1 from Example 4.31. We partition the input vectors X j,
j = 0 to 3, such that ∪3

j=0X j = V4 and for all x ∈ X j, f1(x) = j, where j ∈ Z4:

X0

0000

1000

0111

1111

X1

0010

1010

0101

1101

X2

0001

1001

0110

1110

X3

0011

1011

0100

1100

Let e4 = 1000 and observe that for each set X j and for all x ∈ X j, f1(x) = f1(x⊕ e4).
Thus, e4 is a linear structure and the output invariance for f is skewed in the direction of
e4. From a cryptographer’s standpoint this is undesirable! The weakness in f1 stems from
the way it was constructed. Concatenating two identical copies of a generalized Boolean
function g ∈ G Bq

n will always introduce the linear structure en into the newly constructed
function. While the ease of such a construction may be tempting, it, like so many things in
cryptography, comes with trade-offs. Consider on the other hand the generalized Boolean
function in Table 4.10, which also happens to satisfy the UAC.
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Table 4.10: A UAC function f ∈ G B4
4, without ei as a linear structure

V4 a0 a1 a0⊕a1 f

0000 1 0 1 1

0001 1 0 1 1

0010 1 1 0 3

0011 0 1 1 2

0100 0 0 0 0

0101 1 1 0 3

0110 0 0 0 0

0111 0 1 1 2

1000 0 1 1 2

1001 0 0 0 0

1010 1 1 0 3

1011 0 0 0 0

1100 0 1 1 2

1101 1 1 0 3

1110 1 0 1 1

1111 1 0 1 1

Indexing from right to left and i = 1 to n, let ei be the unit vector with 1 in ith position
and 0 everywhere else. Once again, we partition the input vectors X j, j = 0 to 3, such that
∪3

j=0X j = V4 and for all x ∈ X j, f (x) = j, where j ∈ Z4.

X0

0100

0110

1001

1011

X1

0000

0001

1110

1111

X2

0011

0111

1000

1100

X3

0010

1010

0101

1101

Using this partition, we subsequently consider which unit vectors result in invariance
among the output values for f . Doing so we discover the following:
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• For all w ∈ X0, f (w) = f (w⊕ e2)

• For all x ∈ X1, f (x) = f (x⊕ e1)

• For all y ∈ X2, f (y) = f (y⊕ e3)

• For all z ∈ X3, f (z) = f (z⊕ e4).

This situation is much improved! Now each unit vector is associated with one of the 4 sets
of the partition.

A considerable amount of effort has thus far gone into designing generalized Boolean func-
tions f ∈ G Bq

n such that, for each x ∈ Vn and all i from 1 to n, the function ensures that
for the set of all Hamming distance 1 vectors, f achieves all output values in Zq with equal
probability. It therefore only seems natural that we also ensure that for each x ∈ Vn, the
probability Pr( f (x) = f (x⊕ ei)) is equal for each of the n unit vectors in f .

Definition 4.32. Let f ∈ G Bq
n be a generalized Boolean function which satisfies the uni-

form avalanche criterion and let ei denote a unit vector with the ith bit equal to 1 and all
other bits 0. The function f is said to possess a globally uniform gradient if for each ei,
1≤ i≤ n,

Pr(Dei f (x) = 0) =
1
n
,

where Dei f (x) = f (x⊕ ei)− f (x), is the derivative of f with respect to the unit vector ei.
Generalized Boolean functions which satisfy the UAC and have a globally uniform unit
vector gradient are referred to as Cataract functions.

Definition 4.33. Let f ∈ G Bq
n be a generalized Boolean function and let ei denote a unit

vector with the ith bit equal to 1 and all other bits 0. Then for all x ∈ Vn and i = 1 to n, we
define the gradient of f , denoted ∇ fei(x), as follows:

∇ fei(x) = 〈De1 f (x),De2 f (x), . . . ,Den f (x)〉,

where Dei f (x) is the derivative of f with respect to the unit vector ei.

Theorem 4.34. Let f ∈G Bq
n be a generalized Boolean function which satisfies the uniform

avalanche criterion. Let x ∈ Vn and denote ei as a unit vector with the ith bit equal to 1
and all other bits 0. Then {∇ fei(Vn)}= Zq, ∀i 1≤ i≤ n.
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Proof. Let f ∈ G Bq
n be a generalized Boolean function which satisfies the uniform

avalanche criterion. Since f is UAC, for i = 1 to n, f (x⊕ei) when x runs through Vn, must
achieve all values of Zq (with equal frequency). Subtraction in the derivative, Dei f (x), is
carried modulo q, thus, for each distinct i, f (x⊕ ei)− f (x) is a unique element of Zq. �

Theorem 4.35. Let f ∈ G Bq
n be a generalized Boolean function. Let x ∈ Vn and denote

ei as a unit vector with the ith bit equal to 1 and all other bits 0. If f satisfies the uni-

form avalanche criterion and has a globally uniform gradient, then for all x ∈ Vn, and for

specific i, the set {Dei f (x)} contains all elements of Zq in balanced proportions (in other

words, it is a permutation of the truth table of f ).

Proof. Let f ∈ G Bq
n be a generalized Boolean function which satisfies the uniform

avalanche criterion and which has a globally uniform gradient. The function f has a glob-
ally uniform gradient, thus according to Definition 4.32, for each specific i and unit vector
ei, there are 2n/n vectors x ∈ Vn for which Dei f (x) = 0. However, f is also UAC, so ac-
cording to Theorem 4.34, for each x and all i from 1 to n, {∇ fei(x)} = Zq. Thus, in order
for both conditions to hold, it must be the case that for each specific unit vector, ei, and the
set of all vectors Vn, each value Dei f (x) ∈ Zq occurs with frequency a divisor of 2n. �

We can use Theorem 4.35 to evaluate whether or not a generalized Boolean function that
satisfies the uniform avalanche criterion also has a globally uniform gradient. We demon-
strate the approach using the following example.

Example 4.36. Suppose we would like to check whether of not the functions f1 and f2

from our previous example each satisfy the uniform avalanche criterion and have globally
uniform gradients. Using their truth tables, we compute their respective gradients for all
vectors x ∈ Vn. The results from these calculations are displayed in Table 4.11.
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Table 4.11: Gradients for two UAC generalized Boolean functions f1 and f2

V4 f1 f2 ∇ f1ei
(x) ∇ f2ei

(x)
0000 0 1 〈2,1,3,0〉 〈0,2,3,1〉
0001 2 1 〈2,1,3,0〉 〈0,1,2,3〉
0010 1 3 〈2,3,1,0〉 〈3,2,1,0〉
0011 3 2 〈2,3,1,0〉 〈1,3,0,2〉
0100 3 0 〈2,3,1,0〉 〈3,0,1,2〉
0101 1 3 〈2,3,1,0〉 〈1,3,2,0〉
0110 2 0 〈2,1,3,0〉 〈2,0,3,1〉
0111 0 2 〈2,1,3,0〉 〈2,1,0,3〉
1000 0 2 〈2,1,3,0〉 〈2,1,0,3〉
1001 2 0 〈2,1,3,0〉 〈2,0,3,1〉
1010 1 3 〈2,3,1,0〉 〈1,3,2,0〉
1011 3 0 〈2,3,1,0〉 〈3,0,1,2〉
1100 3 2 〈2,3,1,0〉 〈1,3,0,2〉
1101 1 3 〈2,3,1,0〉 〈3,2,1,0〉
1110 2 1 〈2,1,3,0〉 〈0,1,2,3〉
1111 0 1 〈2,1,3,0〉 〈0,2,3,1〉

Examining the rows of the table, for each vector x, we observe that the gradients for both
functions contain all values Zq. Turning our attention to the columns of each respective
set of gradients, we moreover observe the following: For each column i from 1 to n, the
gradient values associated with ei for f1 are not balanced. For example, the values in the
first column (associated with e1), are all 2. This however is not the case for f2. Here we
see that for each column, i, the ei-associated derivatives in the set of gradients, all appear
with equal frequency. We therefore conclude that f1 does not posses a uniform gradient,
whereas f2 does.
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CHAPTER 5:

Generalized Bent Boolean Functions

Mathematics compares the most

diverse phenomena and discovers the

secret analogies that unite them.

Joseph FourierQ

This chapter includes results on generalized bent Boolean functions from the following
papers: Bent and generalized bent Boolean functions [44], Generalized bent functions and

their Gray images [28], as well as Partial spread and vectorial generalized bent functions

[29]. The dissertation author is a coauthor on these papers. The discourse along with all
results appear in the original form in which they were published in the cited works.

5.1 Introduction
The culmination of our investigation into avalanche features for generalized Boolean func-
tions was the development of what we referred to as cataract functions. These functions
are UAC, free of unit vector linear structures, and contain a global uniform gradient. In this
section we expand upon the idea of removing linear structures from a generalized Boolean
function. Meier and Staffelbach [30] investigated a class of Boolean functions which they
called perfectly nonlinear. We extend here their notion of perfect nonlinear Boolean func-
tions so that it applies to generalized Boolean functions.

Definition 5.1. A generalized Boolean function f : Vn → Zq is called perfect nonlinear

with respect to linear structures (perfect nonlinear for short) if for every 0≤ j ≤ q−1, and
every nonzero vector a ∈ Vn, the equation Da f (x) = f (x⊕a)− f (x) = j has exactly 2n/q

solutions x ∈ Vn (in other words, the derivatives of f at every point a are balanced).

Remark 5.2. Notice that based on the above definition, in order for a generalized Boolean
function f ∈ G Bq

n to be perfect nonlinear, q must be such that q = 2`, where 1≤ `≤ n−1.
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In their cited paper, Meier and Staffelbach demonstrated that the class of perfect nonlinear
and bent Boolean functions coincide.

Generalized bent Boolean function is an active area research. A plethora of papers have
been written on the topic (see [28], [29], [44] and the references therein). We present here a
few results contained in the above cited papers which were coauthored by this dissertation
author.

5.2 Generalized Bent Boolean Functions
The material presented in this section was taken directly from the paper Bent and general-

ized bent Boolean functions [44] and appears in its original published form.

Recall from Chapter 2 that the generalized Walsh–Hadamard transform of f ∈ G Bq
n at any

point u ∈ Vn is the complex valued function

H f (u) = 2−
n
2 ∑

x∈Vn

ζ
f (x)(−1)u·x.

Definition 5.3. [44] A function f ∈ G Bq
n is a generalized bent (gbent) func-

tion if |H f (u)|= 1 for all u ∈ Vn. When q = 2, then f is bent (these exist for
n even, only). If n is odd, a function f ∈Bn is said to be semibent if and only
if |Wf (u)| ∈ {0,

√
2}, for all u ∈ Vn.

Suppose f ∈ G Bq
n is a gbent function such that for every u, we have H f (u) =

ζ ku , for some 0≤ ku < q. Then, for such a gbent function f , there is a function
F : Vn→ Zq such that ζ F = H f . We call such a function F the dual of f . The
reader is cautioned that only some gbent functions admit duals. By applying
Theorem 5.4, one can easily see that the dual of a gbent function is also gbent,
since the Walsh–Hadamard transform of the dual F is HF(u) = ζ f (u) [44].

The following properties of the Walsh–Hadamard transform on generalized
Boolean functions are similar to the Boolean function case [44].
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Theorem 5.4. [44]

(i) Let f ∈ G Bq
n. The inverse of the Walsh–Hadamard transform is given by

ζ
f (y) = 2−

n
2 ∑

u∈Vn

H f (u)(−1)u·y.

Further, C f ,g(u) = Cg, f (u), for all u ∈ Vn, which implies that C f (u) is

always real.

(ii) If f ,g ∈ G Bq
n, then

∑
u∈Vn

C f ,g(u)(−1)u·x = 2nH f (x)Hg(x),

C f ,g(u) = ∑
x∈Vn

H f (x)Hg(x)(−1)u·x.

(iii) Taking the particular case f = g we obtain

C f (u) = ∑
x∈Vn

|H f (x)|2(−1)u·x. (5.1)

(iv) If f ∈ G Bq
n, then f is a gbent function if and only if

C f (u) =

2n if u = 0,

0 if u 6= 0.

(v) Moreover, the (generalized) Parseval’s identity holds

∑
x∈Vn

|H f (x)|2 = 2n. (5.2)

Let ζ = e2πı/q be the q-primitive root of unity, and f : Vn→ Zq as in (2.1). It
turns out that the generalized Walsh–Hadamard spectrum of f can be described
(albeit, in a complicated manner) in terms of the Walsh–Hadamard spectrum
of its Boolean components ai [44].
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Theorem 5.5. [44] The Walsh–Hadamard transform of f : Vn→ Zq, 2h−1 <

q≤ 2h, where f (x) = ∑
h−1
i=0 ai(x)2i, ai ∈Bn is given by

H f (u) = 2−h
∑

I⊆{0,...,h−1}
ζ ∑i∈I 2i

∑
J⊆I,K⊆Ī

(−1)|J|W∑`∈J∪K a`(x)(u).

Proof. For brevity, we use the notations ζi := ζ 2i
. It is easy to see that, for

s ∈ Z2, we have

zs =
1+(−1)s

2
+

1− (−1)s

2
z, (5.3)

and so, we have the identities ζ
ai(x)
i = 1

2 (Ai +A′iζi), where Ai = 1+(−1)ai(x),
A′i = 1− (−1)ai(x), and the complement Ī := {0,1, . . . ,h−1}\ I, for some sub-
set I of {0,1, . . . ,h−1}. The Walsh–Hadamard coefficients of f are

2n/2H f (u) = ∑
x

ζ
f (x)(−1)u·x = ∑

x
ζ ∑

h−1
i=0 ai(x)2i

(−1)u·x

= ∑
x
(−1)u·x

h−1

∏
i=0

(
ζ

2i
)ai(x)

= ∑
x
(−1)u·x

h−1

∏
i=0

1
2

(
1+(−1)ai(x)+(1− (−1)ai(x))ζi

)
= 2−h

∑
x
(−1)u·x

∑
I⊆{0,...,h−1}

∏
i∈I, j∈Ī

ζiA′iA j

= 2−h
∑
x
(−1)u·x

∑
I⊆{0,...,h−1}

ζ ∑i∈I 2i

∏
i∈I, j∈Ī

A′iA j

= 2−h
∑
x
(−1)u·x

∑
I⊆{0,...,h−1}

ζ ∑i∈I 2i

∑
J⊆I,K⊆Ī

(−1)|J|(−1)∑ j∈J a j(x)⊕∑k∈K ak(x)

= 2−h
∑

I⊆{0,...,h−1}
ζ ∑i∈I 2i

∑
J⊆I,K⊆Ī

(−1)|J|∑
x
(−1)u·x(−1)∑`∈J∪K a`(x),

and so, we obtain our result. �

5.3 Construction of Generalized Bent Functions in G B8
n

The material presented in this section was taken directly from the paper Bent and general-

ized bent Boolean functions [44] and appears in its original published form.
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Theorem 5.6. [44] If f : Vn+2→ Z8 (n even) is given by

f (x,y,z) = 4c(x)+(4a(x)+2c(x)+1)y+(4b(x)+2c(x)+1)z−2yz,

where a,b,c ∈Bn such that all a,b,c, a⊕c, b⊕c and a⊕b are bent satisfying

Wa(x)Wb(x)+Wa⊕c(x)Wb⊕c(x) =−2Wa⊕b(x)Wc(x)), for all x ∈ Vn, (5.4)

then f is gbent in G B8
n+2.

Proof. We compute the Walsh–Hadamard coefficients (using that ζ = 1√
2
(1+

ı) and ζ 2 = ı)

2(n+2)/2H f (u,v,w) = ∑
(x,y,z)∈Vn+2

ζ
f (x,y,z)(−1)u·x⊕vy⊕wz

= ∑
x∈Vn

ζ
4c(x)(−1)u·x

∑
(y,z)∈V2

ζ
(4a(x)+2c(x)+1)y+(4b(x)+2c(x)+1)z−2yz(−1)vy⊕wz

= ∑
x∈Vn

(−1)c(x)⊕u·x
(

1+(−1)v(−1)a(x)ıc(x)ζ +(−1)w(−1)b(x)ıc(x)ζ

+(−1)a(x)⊕b(x)⊕c(x)⊕v⊕w
)
.

Applying equation (5.3) with (z,s) = (ı,c(x)), that is, ic(x) = 1+(−1)c(x)

2 +
1−(−1)c(x)

2 ı, we obtain

2H f (u,v,w) =Wc(u)+
(−1)vζ

2
(Wa⊕c(u)+Wa(u)+ ıWa⊕c(u)− ıWa(u))

+
(−1)wζ

2
(Wb⊕c(u)+Wb(u)+ ıWb⊕c(u)− ıWb(u))+(−1)v⊕wWa⊕b(u)

= Wc(u)+
(−1)v
√

2
(Wa(u)+ ıWa⊕c(u))

+
(−1)w
√

2
(Wb(u)+ ıWb⊕c(u))+(−1)v⊕wWa⊕b(u).
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Therefore, the real and the imaginary parts of H f (u,v,w) are

Re(H f (u,v,w)) = Wc(u)+(−1)v⊕wWa⊕b(u)+
(−1)vWa(u)+(−1)wWb(u)√

2
,

Im(H f (u,v,w)) =
(−1)vWa⊕c(u)+(−1)wWb⊕c(u)√

2
.

and so,

4|H f (u,v,w)|2 =
1
2
(
Wa(u)2 +Wb(u)2 +Wa⊕c(u)2 +Wb⊕c(u)2 +2Wc(u)2 +2Wa⊕b(u)2)

+(−1)v+w(Wa(u)Wb(u)+Wa⊕c(u)Wb⊕c(u)+2Wc(u)Wa⊕b(u))

+
√

2((−1)v(Wa(u)Wc(u)+Wb(u)Wa⊕b(u))+(−1)w(Wb(u)Wc(u)+Wa(u)Wa⊕b(u)))

(5.5)

Since a,b,c,a ⊕ c,b ⊕ c,a ⊕ b are all bent then |Wa(u)| = |Wb(u)| =
|Wc(u)| = |Wa⊕b(u)| = |Wa⊕c(u)| = |Wb⊕c(u)| = 1. Further, from the
imposed conditions on these functions’ Walsh–Hadamard coefficients, we
see that Wa(u)Wb(u) + Wa⊕c(u)Wb⊕c(u) + 2Wc(u)Wa⊕b(u) = 0, and also
Wa(u)Wc(u)+Wb(u)Wa⊕b(u) = 0, Wb(u)Wc(u)+Wa(u)Wa⊕b(u) = 0 (that is
because if Wa(u) and Wb(u) have the same sign, then Wc(u),Wa⊕b have op-
posite signs; further, Wa(u) and Wb(u) have opposite signs, then Wc(u),Wa⊕b

have the same sign). Using these equations, we get that 4|H f (u,v,w)|2 = 4,
and so, f is gbent [44].

�

5.4 Necessary Conditions for Generalized Bent Functions
The material presented in this section was taken directly from the paper Generalized bent

functions and their Gray images [28] and appears in its original published form.

Theorem 5.7. [28] All gbent functions f ∈ G B2k

n are regular, except for n

odd and k = 2, in which case we have H 4
f (u) = 2

n−1
2 (±1± i).
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From the definition of a Boolean bent function via the Walsh-Hadamard trans-
form we immediately obtain the following equivalent definition, where we de-
note the support of a Boolean function f by supp( f ) := {x ∈ Vn : f (x) = 1}:
A Boolean function f : Vn → F2 is bent if and only if for every u ∈ Vn the
function fu(x) := f (x)⊕u ·x satisfies |supp( fu)|= 2n−1±2n/2. Our next tar-
get is to show an analog description for gbent functions. We use the following
lemma [28].

Lemma 5.8. [28] Let q = 2k, k > 1, ζ = e2πi/q. If ρl ∈Q, 0≤ l ≤ q−1 and

∑
q−1
l=0 ρlζ

l = r is rational, then ρ j = ρ2k−1+ j, for 1≤ j ≤ 2k−1−1 [28].

Proof. Since ζ 2k−1+l =−ζ l for 0≤ l ≤ 2k−1−1, we can write every element
z of the cyclotomic field Q(ζ ) as

z =
2k−1−1

∑
l=0

λlζ
l, λl ∈Q,0≤ l ≤ 2k−1−1.

As [Q(ζ ) : Q] = ϕ(q) = 2k−1 (ϕ is Euler’s totient function), the set
{1,ζ , . . . ,ζ 2k−1−1} is a basis of Q(ζ ). Since

0 =
q−1

∑
l=0

ρlζ
l− r = (ρ0−ρ2k−1− r)+

2k−1−1

∑
l=1

(ρ j−ρ2k−1+ j)ζ
l.

the assertion of the lemma follows. �

Proposition 5.9. [28] Let n= 2m be even, and for a function f :Vn→Z2k and

u ∈ Vn, let fu(x) = f (x)+ 2k−1(u · x), and let b(u)j = |x ∈ Vn : fu(x) = j}|,
0 ≤ j ≤ 2k− 1. Then f is gbent if and only if for all u ∈ Vn there exists an

integer ρu, 0≤ ρu ≤ 2k−1−1 such that

b(u)2k−1+ρu
= b(u)ρu ±2m and b(u)2k−1+ j = b(u)j , for 0≤ j ≤ 2k−1−1, j 6= ρu.

Proof. First suppose that f is gbent. Then by Theorem 5.7, f is a regular gbent
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function. Hence

H f (u)= ∑
x∈Vn

ζ
f (x)(−1)u·x = ∑

x∈Vn

ζ
f (x)+2k−1(u·x)=H fu(0)=

2k−1

∑
j=0

b(u)j ζ
j = 2m

ζ
r

for some 0 ≤ r ≤ 2k− 1. With ρu = r if 0 ≤ r ≤ 2k−1− 1, and ρu = r− 2k−1

otherwise, the claim follows from Lemma 5.8.

The converse statement is verified in a straightforward manner [28]. �

We now can present connections between gbent functions and their compo-
nents for the general case of gbent functions in G B2k

n , k > 1. This generalizes
the corresponding results for k = 2 and k = 3 in [42] and in [44].

Theorem 5.10. [28] Let n be even, and let f (x) be a gbent function in G B2k

n ,

k > 1, (uniquely) given as

f (x) = a1(x)+2a2(x)+ · · ·+2k−2ak−1(x)+2k−1ak(x),

ai ∈Bn, 1≤ i≤ k. Then all Boolean functions of the form

gc(x) = c1a1(x)⊕ c2a2(x)⊕·· ·⊕ ck−1ak−1(x)⊕ak(x),

c = (c1,c2, . . . ,ck−1) ∈ Fn−1
2 , are bent functions.

Proof. As in Proposition 5.9, for the gbent function f we denote by fu the func-
tion fu(x) = a1(x)+ · · ·+2k−2ak−1(x)+2k−1(ak(x)+u ·x) in G B2k

n . Again,
the integer b(u)r , 0≤ r≤ 2k−1, is defined as b(u)r = |{x∈Vn : fu(x) = r}|. By
Proposition 5.9, b(u)r+2k−1 = b(u)r for all 0≤ r≤ 2k−1−1, except for one element

ρu ∈ {0, . . . ,2k−1−1} depending on u, for which b(u)
ρu+2k−1 = b(u)ρu ±2n/2.

Since it is somewhat easier to follow, we first show the bentness of ak(x) =
g0(x). In the second step we show the general case. For r 6= ρu, 0 ≤ r ≤
2k−1− 1, consider all x ∈ Vn for which a1(x)+ · · ·+ 2k−2ak−1(x) = r. Since
b(u)r+2k−1 = b(u)r , for exactly half of these x we have ak(x)+u · x = 0 (note that
the number of these x must be even). Among all x ∈ Vn for which a1(x)+
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· · ·+ 2k−2ak−1(x) = ρu, there are b(u)ρu for which ak(x)+ u · x = 0, and there
are b(u)

ρu+2k−1 = b(u)ρu ± 2n/2 for which ak(x)+u · x = 1. Hence for the Walsh-
Hadamard transform of ak we get

Wak(u) = ∑
x∈Vn

(−1)ak(x)⊕u·x =±2n/2,

which shows that ak is bent.

To show that gc is bent for every c ∈ Fk−1
2 , we write fu(x), u ∈ Vn, as

fu(x) = c1a1(x)+ · · ·+ ck−12k−2ak−1(x) + c̄1a1(x)+ · · ·+ c̄k−12k−2ak−1(x)

+2k−1(ak(x)+u ·x) := h(x)+ h̄(x)+2k−1(ak(x)+u ·x),

where c̄ = c⊕1. Note that every 0 ≤ r ≤ 2k−1−1 in the value set of a1(x)+

· · ·+2k−2ak−2(x) has then a unique representation as h(x)+ h̄(x). Consider x
for which h(x)+ h̄(x) = r+ s 6= ρu. Again from b(u)r+2k−1 = b(u)r we infer that
for half of those x we have ak(x)⊕u ·x = 0. Hence also

gc(x)⊕u ·x = c1a1(x)⊕·· ·⊕ ck−1ak−1(x)⊕ak(x)⊕u ·x = 0

for exactly half of those x. (Observe that h(x1) = h(x2) = r implies c1a1(x1)⊕
·· · ⊕ ck−1ak−1(x1) = c1a1(x2)⊕ ·· · ⊕ ck−1ak−1(x2).) Similarly as above,
among all x ∈ Vn for which h(x) + h̄(x) = ρu, there are b(u)ρu for which
ak(x)⊕u ·x= 0, and there are b(u)

ρu+2k−1 = b(u)ρu ±2n/2 for which ak(x)⊕u ·x= 1.
From this we conclude that |{x∈Vn : h(x)+ h̄(x)= ρu and fu(x)= 1}|−|{x∈
Vn : h(x)+ h̄(x) = ρu and fu(x) = 0}|=±2n/2. Therefore

Wgc(u) = ∑
x∈Vn

(−1)gc(x)+u·x =±2n/2,

and gc is bent [28]. �

Theorem 5.10, which assigns to a gbent function an affine space of bent func-
tions, provides a necessary condition for a function f ∈ G B2k

n to be gbent. For
k > 2 the condition is not sufficient [28].
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CHAPTER 6:

Conclusion and Future Research

Set your course by the stars, not by the

lights of every passing ship.

Omar N. Bradley?????

6.1 Conclusion
In this dissertation we investigated generalized Boolean function which were correlation
immune, satisfied various avalanche features, and which were generalized bent. We pre-
sented several construction techniques for order 1 and higher correlation immune general-
ized Boolean functions, and also established new avalanche criteria for generalized Boolean
functions. The goal of this research has been to increase our understanding of the inherent
attributes of generalized Boolean functions so that we are capable of making prudent de-
sign choices when selecting these functions as components in future encryption schemes.
Along the way we discovered several parallels between these functions and their Boolean
counterparts, but oftentimes saw that things become more complicated when operating in
a q-ary environment. In particular, we showed that while the Wash-Hadamard transform
is an outstanding tool for establishing whether or not Boolean functions satisfy certain
cryptographic properties such as balance and correlation immunity, its utility is somewhat
diminished in the more generalized setting. One area of concern which we attempted to
address was the potential of adversaries carrying out what we termed was a “decomposi-
tion attack” whereby they perform a binary expansion of the q-ary functional outputs in
an attempt to discover weaknesses in the underlying Boolean function components. We
showed that correlation immune generalized Boolean functions will not succumb to such
techniques, but that when it comes to avalanche criteria, more care must be taken. One
family of generalized Boolean functions which we believe shows particular promise are
those that satisfy the uniform avalanche criterion. These functions are both probabilistic
SAC as well as 1-resilient (order 1 correlation immune and balanced). Moreover, their con-
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stituent Boolean functions are guaranteed to also be resilient and SAC, thus making these
functions resistant to decomposition attacks targeting these properties. Like many things
in cryptography, trade-off and compromises abound. While generalized Boolean functions
will most likely find their rightful place in certain applications, they will equally likely
prove unsuitable for others.

6.2 Future Research
We briefly investigated linear structures and directional derivatives of UAC compliant gen-
eralized Boolean function, demonstrating the utility in ensuring that equal probabilities
exist among the unit vectors when the generalized Boolean function’s derivatives equals
zero. It would be interesting in future research to further investigate linear structures of
generalized Boolean functions, including the Meier and Staffelbach approach of perfect
nonlinear generalized Boolean functions [30], as well as a notion of almost perfect non-
linear (APN) for generalized Boolean functions. We would also like to find a proof of
Conjecture 2.26 and thus prove that there can be no symmetric and balanced generalized
Boolean functions.
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APPENDIX A:

Table of Nontrivial Binomial Bisections

The following table of nontrivial bisection solutions is a copy of the table which appears
in the coauthored paper Bisecting binomial coefficients which was published in the journal
Discrete Applied Mathematics [27].

The table contains the complete set of nontrivial bisection solution vectors for
1 ≤ n ≤ 50. In the interest of saving space, we only list the highest lexico-
graphically occurring solutions. Any additional solutions which a listed solu-
tion may yield, can be generated in the following manner: If a pair of bits are
equidistant from the center of the given vector and differ, they may both be
negated to produce a new solution. Additionally, any solution vector can also
be reversed and negated in its entirety to produce yet another solution [27].
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Table A.1: Nontrivial binomial bisections

n number of solutions nontrivial solution vectors

8 4 100110001
13 16 11110011001000

14 4 101001101000101
8 101011100100101

20 4 101010011010100010101
24 32 1000110111011000100010001

16 1011001111010100101000101
26 4 101010100110101010001010101
29 2048 111111110111011000110010000000
31 512 11110110011111100010101000001000

128 11110110010110011001100000001000
32 4 101010101001101010101000101010101
33 16384 1111111111111001101001000000000000
34 64 10101001110110111010000000110010101

32 10101001110111101010010000110010101
16 10101001111100111010000110110010101
8 10101001111101101010010110110010101
8 10101010101011011010001010101010101

35 8 101010101010100111001001010101010101
16 101010101011100111001000110101010101

38 4 101010101010011010101010100010101010101
32 101111110010111110100011100010011011101

41 2048 111111011110101001111000100100001110100000
4096 111111011110111001111000100010001110100000
8192 111111111111001010111001000100100010100000

16384 111111111111011010111001000010100010100000
44 4 101010101010100110101010101010001010101010101

128 101011111000111111110110000011011000110110101
47 1048576 111111111111110100111111000001000000100000000000
48 4096 1011001111011011010111010101000000000001000000101
50 4 101010101010101001101010101010101000101010101010101
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APPENDIX B:

Binomial Bisection Program

The following parallel computer program written in Julia was created by the dissertation
author to exhaustively search for all nontrivial bisection solutions. The code was run on the
Hamming high performance computer (HPC) at the Naval Postgraduate School, and found
all nontrivial binomial bisections for n ≤ 51 (see Appendix A.1). In addition to the cited
paper, these research results also contributed to the integer sequence, for 37 ≤ n ≤ 51, of
the total number of binomial bisection (trivial and nontrivial) which appears as A200147 in
the Online Encyclopedia of Integer Sequences.

u s i n g MPI

f u n c t i o n b i s e c t ( n , q , p , r )

# t y p e a l i a s B I n t _ t UInt8

# t y p e a l i a s B I n t _ t UInt16

# t y p e a l i a s B I n t _ t UInt32

t y p e a l i a s B I n t _ t UInt64

# t y p e a l i a s B I n t _ t UInt128

@a sse r t B I n t _ t != UInt8 | | n < 8

@a sse r t B I n t _ t != UInt16 | | n < 16

@a sse r t B I n t _ t != UInt32 | | n < 32

@a sse r t B I n t _ t != UInt64 | | n < 64

@a sse r t B I n t _ t != UInt128 | | n < 128

comm = MPI .COMM_WORLD

r o o t = 0

rank = MPI . Comm_rank (comm)

s i z e = MPI . Comm_size (comm)

c o n s t p r o c s = q

c o n s t pgms = p

c o n s t pgm_ins t = r
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c o n s t s t r i d e : : B I n t _ t = I n t ( 2 ^ ( n + 1 ) / ( p r o c s ∗pgms ) )

# S e t t a r g e t v a l u e

c o n s t b i s e c t _ s u m = B I n t _ t ( 2 ) ^ ( n−1)

# S e t v e c t o r c e n t e r

c o n s t c e n t e r = d i v ( n +1 ,2 )

# S e t lower Hamming we i gh t boundry

i f n <=4

lwr_wt = 0

e l s e i f 4 < n <= 6

lwr_wt = 2

e l s e i f 7 <= n <= 8

lwr_wt = 3

e l s e i f 8 < n <= 10

lwr_wt = 4

e l s e i f 10 < n <=12

lwr_wt = 5

e l s e

m = I n t ( c e i l ( l o g ( 2 , n ) ) )

lwr_wt = I n t ( c e i l ( l o g ( 2 ,m) ) ) + m

end

# S e t uppe r Hamming we i gh t boundry

i f n <=4

upr_wt = n+1

e l s e

upr_wt = n−lwr_wt +1

end

# C r e a t e b i n a r y c o e f f i c i e n t s a r r a y

b i n _ c o e f = Array ( B I n t _ t , n +1)

f o r j = 1 : n+1
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@inbounds b i n _ c o e f [ j ] = b i n o m i a l ( b i g ( n ) , j −1)

end

# I n i t i a l i z e s o l u t i o n c o n t a i n e r s

s o l n s = [ ]

c o u n t = 0

f u n c t i o n g a t h e r ( obj , r o o t : : I n t e g e r , comm : : MPI .Comm)

buf = Array ( t y p e o f ( o b j ) , MPI . Comm_size (comm ) )

i f ( MPI . Comm_rank (comm) != r o o t )

MPI . send ( obj , r o o t , 666 , comm)

e l s e

f o r r = 0 : MPI . Comm_size (comm)−1

i f r != r o o t

rmesg = MPI . r e c v ( r , 666 , comm)

buf [ r +1] = rmesg [ 1 ]

e l s e

buf [ r +1] = o b j

end

end

end

buf

end

# T e s t f o r symmetry

f u n c t i o n s y m _ t e s t ( f )

i = 1

@inbounds w h i l e i <= c e n t e r

i f f [ i ] != f [ n+2− i ]

r e t u r n 0

b r e a k

e l s e

i += 1

end
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end

r e t u r n 1

end

# E l i m i n a t e v e c t o r s

f u n c t i o n t e s t ( f )

i s sym = t r u e

j =1

w h i l e j <= c e n t e r

i f f [ j ] == 1 && f [ n+2− j ] == 0

r e t u r n 0

e l s e i f i s sym && f [ j ] != f [ n+2− j ]

i s sym = f a l s e

end

j += 1

end

i f i ssym && f [ 1 ] == 1

r e t u r n 0

end

r e t u r n 1

end

# G e n e r a t e s o l u t i o n v e c t o r s

f u n c t i o n g e n _ s o l ( f )

i f s y m _ t e s t ( f ) == 1

c o u n t += 2

e l s e

j = 0

f o r i = 1 : c e n t e r

i f f [ i ] != f [ n+2− i ]

j += 1

end

end

c o u n t += 2^ j
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end

end

#Check c a n d i d a t e v e c t o r s

f = z e r o s ( B I n t _ t , n + 1 ) ;

B I n t _ z e r o = B I n t _ t ( 0 )

BIn t_one = B I n t _ t ( 1 )

s t a r t : : B I n t _ t = pgm_ins t ∗ ( p r o c s ∗ s t r i d e ) + ( r ank ∗ s t r i d e ) + 1

s t o p : : B I n t _ t = ( s t a r t + s t r i d e ) − 1

f o r s = s t a r t : s t o p

sum_f = B I n t _ z e r o

f o r i = 1 : n+1

tmp = s & BIn t_one

s = s >> 1

f [ i ] = tmp

sum_f += tmp

i f sum_f >= upr_wt

b r e a k

end

end

i f lwr_wt < sum_f < upr_wt

i f t e s t ( f ) == 1

my_sum = B I n t _ t ( 0 )

f o r k = 1 : n+1

i f f [ k ] == 1

my_sum += b i n _ c o e f [ k ]

end

i f my_sum > b i s e c t _ s u m

b r e a k

end

end
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i f b i s e c t _ s u m == my_sum

p r i n t l n ( round ( I n t , f ) )

g e n _ s o l ( f )

end

end

end

end

gc ou n t = g a t h e r ( count , r o o t , comm)

i f ( r ank == r o o t )

num_sol = sum ( g cou n t )

p r i n t l n ( "N = " , n , " S e c t i o n = " , pgm_ins t , " ; Number o f B i s e c t i o n s = " ,

num_sol )

end

end

l e t

MPI . I n i t ( )

n = 51

q = 64

p = 64

r = 53

i f ( MPI . Comm_rank ( MPI .COMM_WORLD) == 0)

t i c ( )

end

b i s e c t ( n , q , p , r )

i f ( MPI . Comm_rank ( MPI .COMM_WORLD) == 0)

t o c ( )

end

MPI . F i n a l i z e ( )

end
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APPENDIX C:

Some Linear Orthogonal Arrays for Higher Order

Correlation Immune Generalized Boolean Function

Constructions

The following (incomplete) list of linear orthogonal arrays which are suitable for construct-
ing higher order correlation immune generalized Boolean functions using the method out-
lined in Algorithm 4, have been compiled using data from Hedayat, Sloane and Stufken’s
book on orthogonal arrays [19] as well as the Sloan online database of orthogonal ar-
rays [41].

OA(8,5,2,2):
00000
10011
01010
00101
11001
10110
01111
11100

OA(8,7,2,2):
0000000
1010101
0110011
1100110
0001111
1011010
0111100
1101001

OA(16,8,2,3):
00000000
01010101
00110011
01100110
00001111
01011010
00111100
01101001
11111111
10101010
11001100
10011001
11110000
10100101
11000011
10010110

OA(16,8,2,3):
00000000
00101110
01010110
01111000
10011010
10110100
11001100
11100010
11111111
11010001
10101001
10000111
01100101
01001011
00110011
00011101
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OA(128,9,2,5):
000000000
111000000
100100000
011100000
010010000
101010000
110110000
001110000
110001000
001001000
010101000
101101000
100011000
011011000
000111000
111111000
100000100
011000100
000100100
111100100
110010100
001010100
010110100
101110100
010001100
101001100
110101100
001101100
000011100
111011100
100111100
011111100

010000010
101000010
110100010
001100010
000010010
111010010
100110010
011110010
100001010
011001010
000101010
111101010
110011010
001011010
010111010
101111010
110000110
001000110
010100110
101100110
100010110
011010110
000110110
111110110
000001110
111001110
100101110
011101110
010011110
101011110
110111110
001111110

110000001
001000001
010100001
101100001
100010001
011010001
000110001
111110001
000001001
111001001
100101001
011101001
010011001
101011001
110111001
001111001
010000101
101000101
110100101
001100101
000010101
111010101
100110101
011110101
100001101
011001101
000101101
111101101
110011101
001011101
010111101
101111101

100000011
011000011
000100011
111100011
110010011
001010011
010110011
101110011
010001011
101001011
110101011
001101011
000011011
111011011
100111011
011111011
000000111
111000111
100100111
011100111
010010111
101010111
110110111
001110111
110001111
001001111
010101111
101101111
100011111
011011111
000111111
111111111
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OA(16,15,2,2):
000000000000000
101010101010101
011001100110011
110011001100110
000111100001111
101101001011010
011110000111100
110100101101001
000000011111111
101010110101010
011001111001100
110011010011001
000111111110000
101101010100101
011110011000011
110100110010110

OA(16,15,2,2):
000000000000000
101010101010101
011001100110011
110011001100110
000111100001111
101101001011010
011110000111100
110100101101001
000000011111111
101011010101001
011001111001100
110010110011010
000111111110000
101100110100110
011110011000011
110101010010101

OA(16,15,2,2):
000000000000000
101010101010101
011001100110011
110011001100110
000111100001111
101101001011010
011110000111100
110100101101001
000000011111111
000111111110000
011010111001010
011101011000101
101011010101001
101100110100110
110001110011100
110110010010011
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OA(16,15,2,2):
000000000000000
101010101010101
011001100110011
110011001100110
000111100001111
101101001011010
011110000111100
110100101101001
000000011111111
001011111101000
010111011010001
011100111000110
100101110110100
101110010100011
110010110011010
111001010001101

OA(16,15,2,2):
000000000000000
101010100001111
011001100110011
110011001010101
000111100111100
101101001100110
011110001101001
110100101011010
000000011111111
101010111110000
011001111001100
110011010101010
000111111000011
101101010011001
011110010010110
110100110100101

OA(32,16,2,3):
0000000000000000
0101010101010101
0011001100110011
0110011001100110
0000111100001111
0101101001011010
0011110000111100
0110100101101001
0000000011111111
0101010110101010
0011001111001100
0110011010011001
0000111111110000
0101101010100101
0011110011000011
0110100110010110
1111111111111111
1010101010101010
1100110011001100
1001100110011001
1111000011110000
1010010110100101
1100001111000011
1001011010010110
1111111100000000
1010101001010101
1100110000110011
1001100101100110
1111000000001111
1010010101011010
1100001100111100
1001011001101001
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OA(32,16,2,3):
0000000000000000
0101010101010101
0011001100110011
0110011001100110
0000111100001111
0101101001011010
0011110000111100
0110100101101001
0000000011111111
0101011010101001
0011001111001100
0110010110011010
0000111111110000
0101100110100110
0011110011000011
0110101010010101
1111111111111111
1010101010101010
1100110011001100
1001100110011001
1111000011110000
1010010110100101
1100001111000011
1001011010010110
1111111100000000
1010100101010110
1100110000110011
1001101001100101
1111000000001111
1010011001011001
1100001100111100
1001010101101010

OA(32,16,2,3):
0000000000000000
0101010101010101
0011001100110011
0110011001100110
0000111100001111
0101101001011010
0011110000111100
0110100101101001
0000000011111111
0000111111110000
0011010111001010
0011101011000101
0101011010101001
0101100110100110
0110001110011100
0110110010010011
1111111111111111
1010101010101010
1100110011001100
1001100110011001
1111000011110000
1010010110100101
1100001111000011
1001011010010110
1111111100000000
1111000000001111
1100101000110101
1100010100111010
1010100101010110
1010011001011001
1001110001100011
1001001101101100

OA(32,16,2,3):
0000000000000000
0101010101010101
0011001100110011
0110011001100110
0000111100001111
0101101001011010
0011110000111100
0110100101101001
0000000011111111
0001011111101000
0010111011010001
0011100111000110
0100101110110100
0101110010100011
0110010110011010
0111001010001101
1111111111111111
1010101010101010
1100110011001100
1001100110011001
1111000011110000
1010010110100101
1100001111000011
1001011010010110
1111111100000000
1110100000010111
1101000100101110
1100011000111001
1011010001001011
1010001101011100
1001101001100101
1000110101110010
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OA(32,16,2,3):
0000000000000000
0101010100001111
0011001100110011
0110011001010101
0000111100111100
0101101001100110
0011110001101001
0110100101011010
0000000011111111
0101010111110000
0011001111001100
0110011010101010
0000111111000011
0101101010011001
0011110010010110
0110100110100101
1111111111111111
1010101011110000
1100110011001100
1001100110101010
1111000011000011
1010010110011001
1100001110010110
1001011010100101
1111111100000000
1010101000001111
1100110000110011
1001100101010101
1111000000111100
1010010101100110
1100001101101001
1001011001011010
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OA(64,32,2,3):
00000000000000000000000000000000
01010101010101010101010101010101
00110011001100110011001100110011
01100110011001100110011001100110
00001111000011110000111100001111
01011010010110100101101001011010
00111100001111000011110000111100
01101001011010010110100101101001
00000000111111110000000011111111
01010101101010100101010110101010
00110011110011000011001111001100
01100110100110010110011010011001
00001111111100000000111111110000
01011010101001010101101010100101
00111100110000110011110011000011
01101001100101100110100110010110
00000000000000001111111111111111
01010101010101011010101010101010
00110011001100111100110011001100
01100110011001101001100110011001
00001111000011111111000011110000
01011010010110101010010110100101
00111100001111001100001111000011
01101001011010011001011010010110
00000000111111111111111100000000
01010101101010101010101001010101
00110011110011001100110000110011
01100110100110011001100101100110
00001111111100001111000000001111
01011010101001011010010101011010
00111100110000111100001100111100
01101001100101101001011001101001

11111111111111111111111111111111
10101010101010101010101010101010
11001100110011001100110011001100
10011001100110011001100110011001
11110000111100001111000011110000
10100101101001011010010110100101
11000011110000111100001111000011
10010110100101101001011010010110
11111111000000001111111100000000
10101010010101011010101001010101
11001100001100111100110000110011
10011001011001101001100101100110
11110000000011111111000000001111
10100101010110101010010101011010
11000011001111001100001100111100
10010110011010011001011001101001
11111111111111110000000000000000
10101010101010100101010101010101
11001100110011000011001100110011
10011001100110010110011001100110
11110000111100000000111100001111
10100101101001010101101001011010
11000011110000110011110000111100
10010110100101100110100101101001
11111111000000000000000011111111
10101010010101010101010110101010
11001100001100110011001111001100
10011001011001100110011010011001
11110000000011110000111111110000
10100101010110100101101010100101
11000011001111000011110011000011
10010110011010010110100110010110
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OA(64,32,2,3):
00000000000000000000000000000000
01010101010101010101010101010101
00110011001100110011001100110011
01100110011001100110011001100110
00001111000011110000111100001111
01011010010110100101101001011010
00111100001111000011110000111100
01101001011010010110100101101001
00000000111111110000000011111111
01010110101010010101011010101001
00110011110011000011001111001100
01100101100110100110010110011010
00001111111100000000111111110000
01011001101001100101100110100110
00111100110000110011110011000011
01101010100101010110101010010101
00000000000000001111111111111111
01010101010101011010101010101010
00110011001100111100110011001100
01100110011001101001100110011001
00001111000011111111000011110000
01011010010110101010010110100101
00111100001111001100001111000011
01101001011010011001011010010110
00000000111111111111111100000000
01010110101010011010100101010110
00110011110011001100110000110011
01100101100110101001101001100101
00001111111100001111000000001111
01011001101001101010011001011001
00111100110000111100001100111100
01101010100101011001010101101010

11111111111111111111111111111111
10101010101010101010101010101010
11001100110011001100110011001100
10011001100110011001100110011001
11110000111100001111000011110000
10100101101001011010010110100101
11000011110000111100001111000011
10010110100101101001011010010110
11111111000000001111111100000000
10101001010101101010100101010110
11001100001100111100110000110011
10011010011001011001101001100101
11110000000011111111000000001111
10100110010110011010011001011001
11000011001111001100001100111100
10010101011010101001010101101010
11111111111111110000000000000000
10101010101010100101010101010101
11001100110011000011001100110011
10011001100110010110011001100110
11110000111100000000111100001111
10100101101001010101101001011010
11000011110000110011110000111100
10010110100101100110100101101001
11111111000000000000000011111111
10101001010101100101011010101001
11001100001100110011001111001100
10011010011001010110010110011010
11110000000011110000111111110000
10100110010110010101100110100110
11000011001111000011110011000011
10010101011010100110101010010101
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OA(64,32,2,3):
00000000000000000000000000000000
01010101010101010101010101010101
00110011001100110011001100110011
01100110011001100110011001100110
00001111000011110000111100001111
01011010010110100101101001011010
00111100001111000011110000111100
01101001011010010110100101101001
00000000111111110000000011111111
00001111111100000000111111110000
00110101110010100011010111001010
00111010110001010011101011000101
01010110101010010101011010101001
01011001101001100101100110100110
01100011100111000110001110011100
01101100100100110110110010010011
00000000000000001111111111111111
01010101010101011010101010101010
00110011001100111100110011001100
01100110011001101001100110011001
00001111000011111111000011110000
01011010010110101010010110100101
00111100001111001100001111000011
01101001011010011001011010010110
00000000111111111111111100000000
00001111111100001111000000001111
00110101110010101100101000110101
00111010110001011100010100111010
01010110101010011010100101010110
01011001101001101010011001011001
01100011100111001001110001100011
01101100100100111001001101101100

11111111111111111111111111111111
10101010101010101010101010101010
11001100110011001100110011001100
10011001100110011001100110011001
11110000111100001111000011110000
10100101101001011010010110100101
11000011110000111100001111000011
10010110100101101001011010010110
11111111000000001111111100000000
11110000000011111111000000001111
11001010001101011100101000110101
11000101001110101100010100111010
10101001010101101010100101010110
10100110010110011010011001011001
10011100011000111001110001100011
10010011011011001001001101101100
11111111111111110000000000000000
10101010101010100101010101010101
11001100110011000011001100110011
10011001100110010110011001100110
11110000111100000000111100001111
10100101101001010101101001011010
11000011110000110011110000111100
10010110100101100110100101101001
11111111000000000000000011111111
11110000000011110000111111110000
11001010001101010011010111001010
11000101001110100011101011000101
10101001010101100101011010101001
10100110010110010101100110100110
10011100011000110110001110011100
10010011011011000110110010010011
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OA(64,32,2,3):
00000000000000000000000000000000
01010101010101010101010101010101
00110011001100110011001100110011
01100110011001100110011001100110
00001111000011110000111100001111
01011010010110100101101001011010
00111100001111000011110000111100
01101001011010010110100101101001
00000000111111110000000011111111
00010111111010000001011111101000
00101110110100010010111011010001
00111001110001100011100111000110
01001011101101000100101110110100
01011100101000110101110010100011
01100101100110100110010110011010
01110010100011010111001010001101
00000000000000001111111111111111
01010101010101011010101010101010
00110011001100111100110011001100
01100110011001101001100110011001
00001111000011111111000011110000
01011010010110101010010110100101
00111100001111001100001111000011
01101001011010011001011010010110
00000000111111111111111100000000
00010111111010001110100000010111
00101110110100011101000100101110
00111001110001101100011000111001
01001011101101001011010001001011
01011100101000111010001101011100
01100101100110101001101001100101
01110010100011011000110101110010

11111111111111111111111111111111
10101010101010101010101010101010
11001100110011001100110011001100
10011001100110011001100110011001
11110000111100001111000011110000
10100101101001011010010110100101
11000011110000111100001111000011
10010110100101101001011010010110
11111111000000001111111100000000
11101000000101111110100000010111
11010001001011101101000100101110
11000110001110011100011000111001
10110100010010111011010001001011
10100011010111001010001101011100
10011010011001011001101001100101
10001101011100101000110101110010
11111111111111110000000000000000
10101010101010100101010101010101
11001100110011000011001100110011
10011001100110010110011001100110
11110000111100000000111100001111
10100101101001010101101001011010
11000011110000110011110000111100
10010110100101100110100101101001
11111111000000000000000011111111
11101000000101110001011111101000
11010001001011100010111011010001
11000110001110010011100111000110
10110100010010110100101110110100
10100011010111000101110010100011
10011010011001010110010110011010
10001101011100100111001010001101
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[17] S. Gangopadhyay, E. Pasalic, and P. Stănică, “A note on generalized bent criteria for Boolean functions,”
IEEE Trans. Inform. Theory, vol. 59, no. 5, pp. 3233–3236, 2013.

[18] J. von zur Gathen and J. Roche, “Polynomials with two values,” Combinatorica, vol. 17, pp. 345–362,
1997.

[19] A.S. Hedayat, N.J.A. Sloane, and J. Stufken, Orthogonal Arrays: theory and applications, New York,
NY, Springer, 1999.
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